
AAF Specification Version 1.1 PRELIMINARY DRAFT 1

Advanced Authoring
Format

Specification
Version 1.1

Preliminary Draft

2 PRELIMINARY DRAFT AAF Specification Version 1.1

Notice
Product specifications are subject to change without Notice. The software described in this
document is furnished under a license agreement, and may be used or copied only in
accordance with the terms of the license agreement.

THE ADVANCED AUTHORING FORMAT SPECIFICATION IS PROVIDED “AS IS” WITH NO
WARRANTIES WHATSOEVER, WHETHER EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR OR INTENDED PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE. IN NO EVENT WILL THE PROMOTERS OR ANY OF THEM BE LIABLE FOR ANY
DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE,
INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES ARISING OUT OF
USE OF THIS ADVANCED AUTHORING FORMAT SPECIFICATION WHETHER OR NOT
SUCH PARTY OR PARTIES HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright © 1998, 1999 Advanced Authoring Format Promoters. All rights reserved

Trademarks
Avid, Avid Cinema, Digidesign, Media Composer, OMF, Open Media Framework, OMF
Interchange, Pro Tools, and Softimage are registered trademarks and Sound Designer II is a
trademark of Avid Technology, Inc., or its subsidiaries or divisions.

Adobe, After Effects, Photoshop, and Premiere are registered trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the
United States and other countries. DirectX, Microsoft, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries.
Matrox is a registered trademark of Matrox Electronic Systems Ltd. Pinnacle is a trademark of
Pinnacle Systems, Inc. Sound Forge is a registered trademark of Sonic Foundry, Inc. UNIX is a
registered trademark of The Open Group. All other trademarks contained herein are the property
of their respective owners.

AAF Specification Version 1.1 PRELIMINARY DRAFT 3

Table of Contents
1. Introduction 11

Background 11

Digital Essence Interchange 16

Data Encapsulation 16

Compositional Information 16

Media Derivation 17

Flexibility and Efficiency 17

Extensibility 17

Digital Essence Delivery 17

AAF File Format 18

AAF Specification Development 18

2. Introduction to Objects, Metadata Objects, and Essence Data 21
Advantages of Object Oriented Interchange 21

Object Model 21

Header Object 22

Dictionary 24

Essence Data and Metadata 24

Metadata Objects 24

Kinds of Metadata Objects 25

Physical Source Metadata Objects and Other Kinds of Source Metadata Objects 25

4 PRELIMINARY DRAFT AAF Specification Version 1.1

File Source Metadata Objects 25

Master Metadata Objects 26

Composition Metadata Objects 26

Metadata Object Kind Summary 26

Components 28

File SourceMobs and EssenceData objects 29

How File Source Metadata Objects are Associated with Digital Essence Data 29

Kinds of MobSlots in Metadata Objects 30

How and Why One Metadata Object Refers to Another Metadata Object 30

Static Image Essence in Metadata Objects 33

Time-varying Video and Audio Essence in Metadata Objects 34

Event Data in Metadata Objects 37

3. Composition Metadata Objects 39
Composition Metadata Object Basics 39

Timeline Mob Slots 40

Sequences 41

Transitions 42

Cuts and the Transition Cut Point 45

Treating Transitions As Cuts 45

Restriction on Overlapping Transitions 45

Static Mob Slots 46

Combining Different Types of Mob Slots 46

Conversion Operations 47

Operations 47

Effect Input Essence Segments 48

Filter Effects with One Input Essence Segment 48

Effects with Two Input Essence Segments 48

Effect Definitions 48

Effect Control Parameters 49

Rendered Effect Essence 50

Effects in Transitions 50

Scope and References 50

Why Use Scope References 50

How to Specify Scope References 51

AAF Specification Version 1.1 PRELIMINARY DRAFT 5

Other Composition Metadata Object Features 52

Preserving Editing Choices with Selectors 52

Using Audio Fade In and Fade Out 53

4. Describing and Storing Essence 55
Overview of Essence 55

Describing Essence with Master Metadata Objects 56

Describing Essence with Source Metadata Objects 58

Sample Rate and Edit Rate in Timeline Essence 58

The Source Origin in Timeline Essence 59

Converting Edit Units to Sample Units 59

Describing Essence Format with Essence Descriptors 60

Describing Image Essence 62

Properties Describing Interleaving 63

Properties Describing Geometry 63

Properties Describing Sampling 64

Properties Describing Alpha Transparency 64

Properties Describing Compression 65

RGBA Component Image Descriptors 65

Color Difference Component Image Descriptors 65

Describing TIFF Image Essence 66

Describing Audio Essence 66

Describing Tape and Film 67

Describing Timecode 67

Describing Edgecode 68

Describing Essence with Pulldown Objects 69

What is Pulldown? 69

NTSC Three-Two Pulldown 70

Other Forms of Pulldown 71

Pulldown Objects in Source Metadata Objects 71

5. Extending AAF 73
Overview of Extending AAF 73

Defining New Effects 74

6 PRELIMINARY DRAFT AAF Specification Version 1.1

Defining New Classes 74

Defining New Properties 75

Defining New Essence Types 75

Tracking Changes with Generation 76

6. AAF Class Model and Class Hierarchy 79
Object model goals 80

Classes and semantic rules 80

Class Hierarchy 81

Appendix A: AAF Object Classes 91
AIFCDescriptor Class 91

CDCIDescriptor Class 92

ClassDefinition Class 95

CodecDefinition Class 97

CommentMarker Class 98

Component Class 98

CompositionMob Class 99

ConstantValue Class 101

ContainerDefinition Class 101

ContentStorage Class 102

ControlPoint Class 103

DataDefinition Class 104

DefinitionObject Class 105

Dictionary Class 106

DigitalImageDescriptor Class 109

Edgecode Class 115

EssenceData Class 116

EssenceDescriptor Class 117

EssenceGroup Class 119

Event Class 120

EventMobSlot Class 121

FileDescriptor Class 122

AAF Specification Version 1.1 PRELIMINARY DRAFT 7

Filler Class 123

FilmDescriptor Class 124

GPITrigger Class 125

Header Class 126

HTMLClip Class 127

HTMLDescriptor Class 128

Identification Class 129

InterchangeObject Class 131

InterpolationDefinition Class 132

IntraFrameMarker Class 133

Locator Class 134

MasterMob Class 135

MIDIFileDescriptor class 135

Mob Class 137

MobSlot Class 139

NestedScope Class 140

NetworkLocator Class 141

OperationDefinition Class 141

OperationGroup Class 143

Parameter Class 144

ParameterDefinition Class 146

PluginDescriptor Class 146

PropertyDefinition Class 149

Pulldown Class 150

RGBADescriptor Class 153

ScopeReference Class 156

Segment Class 158

Selector Class 158

Sequence Class 159

8 PRELIMINARY DRAFT AAF Specification Version 1.1

SourceClip Class 161

SourceMob Class 163

SourceReference Class 164

StaticMobSlot Class 166

TaggedValue Class 166

TapeDescriptor Class 167

TextClip Class 168

TextLocator Class 169

TIFFDescriptor Class 170

Timecode Class 172

TimecodeStream Class 173

TimecodeStream12M Class 174

TimelineMobSlot Class 174

Transition Class 175

TypeDefinition Class 177

TypeDefinitionEnumeration Class 177

TypeDefinitionExtendibleEnumeration 178

TypeDefinitionFixedArray Class 179

TypeDefinitionInteger Class 180

TypeDefinitionRecord Class 181

TypeDefinitionRename Class 182

TypeDefinitionSet Class 183

TypeDefinitionStream Class 184

TypeDefinitionString Class 185

TypeDefinitionStrongObjectReference Class 186

TypeDefinitionVariableArray Class 187

TypeDefinitionWeakObjectReference Class 188

VaryingValue Class 189

WAVEDescriptor Class 191

Appendix B Data types 193

Appendix C Conventions 201

AAF Specification Version 1.1 PRELIMINARY DRAFT 9

Appendix D: Terms and Definitions 203

10 PRELIMINARY DRAFT AAF Specification Version 1.1

AAF Specification Version 1.1 PRELIMINARY DRAFT 11

1. Introduction
The Advanced Authoring Format, or AAF, is an industry-driven, cross-platform, multimedia file format
that will allow interchange of essence and compositional information between AAF-compliant
applications. These applications are primarily content creation tools such as Adobe Premiere ,
Photoshop and After Effects , Avid Media Composer , Softimage DS, and Avid Cinema , and
Sonic Foundry's Sound Forge , to name a few. These applications typically run on top of hardware
supplied by Matrox and Pinnacle Systems.

Background
High-end, rich content authoring is a delicate struggle, wrestling together highly disparate source media,
and arranging all of these elements to form a coherent whole.

Consider the scenario of putting together all of the audio elements for a film soundtrack: this involves
transferring all of the music tracks, the ambient sound tracks, the performer's dialogue, and the Foley
effects from their original source, remixing or editing all of them, and doing split-second synchronizations
to the motion picture elements. This process requires a lot of information about each audio source
element, as well as information about other essence associated with it at the moment of playback.

The media industry uses a wide range of source materials, as well as a set of highly varied capture tools
with very different constraints (cameras, keyboards, audio input sources, scanners). This wide variety
leads to a great deal of time and effort spent converting data into formats that can be used by the wide
variety of authoring applications. Other issues include synchronization accuracy for time-based data
(film, video, audio, animation); operating system and hardware dependencies for interactive media titles;
and download, streaming and playback performance in Internet media applications.

AAF is an industry-driven, cross-platform, multimedia file format that allows interchange of data between
AAF-compliant applications. There are two kinds of data that can be interchanged using AAF:

• Audio, video, still image, graphics, text, animation, music, and other forms of multimedia data. In
AAF these kinds of data are called essence data, because they are the essential data within a
multimedia program that can be perceived directly by the audience

12 PRELIMINARY DRAFT AAF Specification Version 1.1

• Data that provides information on how to combine or modify individual sections of essence data or
that provides supplementary information about essence data. In AAF these kinds of data are called
metadata, which is defined as data about other data. The metadata in an AAF file can provide the
information needed to combine and modify the sections of essence data in the AAF file to produce a
complete multimedia program.

The Society of Motion Picture and Television Engineers (SMPTE) has addressed these problems in the
dedicated hardware world by creating a set of standards that has worked very well through its history.
Computer-based media tool vendors have come up with many varied, mostly proprietary approaches
that all have many strengths as well as weaknesses. As digital technology for essence capture, editing,
compositing, authoring, and distribution approaches ubiquity, the industry demands better interoperability
and standard practices. This document is a specification for a new media industry standard file format,
designed to meet information interchange needs.

Digital Essence File Formats and Issues
Rich media authoring often involves manipulating several types of digital essence files concurrently and
managing interactions and relationships between them. These types of essence generally fall into the
following categories:

• Motion Picture Film/Video

• Audio

• Still Images

• Animation

• 3-D Geometry

• Text

 Despite the relatively small number of categories, the sheer number of available digital essence file
formats, each with its own strength or specific quality (i.e. preferred compression codec, optimized file
size, preferred color resolution, support for transparency, support for sequential display, analog-to-digital
fidelity, or operating system platform), results in many file format-to-file format conversions to produce a
high-quality end product.

 The following formats are just a few of the many in use today:

• AVI and WAV files are widely used essence containers for video and audio, but they do not
support the storage of compositional information or ancillary data such as SMPTE timecode.

• Apple®’s QuickTime® is a technology that incorporates a file format standard optimized for play
back and streaming media, with software for handling a variety of media formats, invoking
effects, and playing QuickTime files. The metadata support in QuickTime is focused on
information needed to play or stream the file.

• Microsoft® DirectX® files are optimized for 3-D images, but do not support other time-varying
essence formats as well as AVI and WAV.

• Open Media Framework® (OMF®) Interchange file format, developed by Avid Technology, Inc.,
is a good step in the direction of interchange, but it has not been widely adopted by other
imaging tools vendors.

AAF Specification Version 1.1 PRELIMINARY DRAFT 13

• The Advanced Streaming Format, or ASF, is a
new file format developed by Microsoft for the
delivery of streaming essence programs over
limited-bandwidth connections. While it meets
many of the needs of this market, content
creation file formats have differing needs.

• The Adobe Photoshop (PSD) file format is used
for storage of still image compositions and related
metadata information. While being recognized by
many content-creation applications for images, it
has limited capabilities for other essence data
types.

 The Advanced Authoring Format helps the content
creation and authoring process by addressing the
shortcomings of these and other formats. In this way, AAF
will allow creative energies to be more focused on the
quality of the compositions rather than dealing with
unnecessary and painful interchange issues, and allows
software development to focus on improvements to the
authoring application's feature set.

 Digital Essence Authoring
 The multimedia content authoring process generally
involves 1) opening one or more source essence files, 2)
manipulating or editing the essence, and 3) saving the
results. Multimedia authoring applications read and
manipulate certain types of essence and save the
resulting file to their own proprietary format, which is
usually specific to a particular hardware platform or
operating system. This closed approach generally makes
the reuse or repurposing of essence extremely difficult. In particular, the compositional metadata (the
data that describes the construction of the composition and not the actual essence data itself) is not
transferable between authoring applications.

14 PRELIMINARY DRAFT AAF Specification Version 1.1

 The Advanced Authoring Format
defines authoring as the creation of
multimedia content including related
metadata. In the authoring process, it is
important to record not only the editing
and scripting decisions that have been
made, but also the steps used to reach
the final output, the sources used to
create the output, the equipment
configuration, intermediate data, and
any alternative choices that may be
selected during a later stage of the
process.

 For example, using Avid DigiDesign
Pro Tools , an audio engineer might be
recording, editing and mixing the sound
for a video. She could record or load the
source media tracks, do gain
normalization, and then mix the tracks
while applying pan, volume, and time
compression transforms to the
individual tracks. When the work is
complete, she can save the files in two
different formats. One format is Pro
Tools native file format, the Sound
Designer II audio file (SD2F), which is the transformed output file information (with a little bit of
metadata available in the resource fork such as number of channels or sampling frequency). The second
format is the Pro Tools Session Files format, which saves the metadata information (edit decisions,
volume gradient transforms, audio processing) separate from the original source essence, allowing for
additional changes to be made to the sound output in a nondestructive fashion.

 If the authoring application saves the resulting essence information as a single, "flattened" file, then
changes cannot be made without going through all of the steps and processes involved. Users may
spend much time and energy reconverting and transferring information and reentering instructions, and
ultimately rewriting the entire file.

 If the authoring application saves the editing and transform data separately from the essence data, then
the essence can be changed directly by a sound-editing application without having to open the authoring
application. However, the metadata (data used to describe any compositional positioning, layering,
playback behavior, editing cut lists, essence mixing, or manipulation) is not accessible unless the
authoring application is opened.

 In an ideal environment a user would be able to use many different applications and not be concerned
with interchange. The essence data and the decisions made in one application would be visible to a user
in another application.

 The Advanced Authoring Format's unified interchange model enables interoperability between
applications. This offers distinct advantages over the current model of separate formats and authoring
tools for each essence type:

• The authoring process requires a wide range of applications that can combine and modify
essence. Although applications may have very different domains, such as an audio editing
application and a 3D graphics animation application, the authoring process requires both
applications to work together to produce the final presentation.

AAF Specification Version 1.1 PRELIMINARY DRAFT 15

• Applications can extract valuable information about the essence data in an AAF file even when it
does not understand the essence data format. It can display this information, which allows the
user to better coordinate the authoring process.

 By enabling interoperability between authoring applications, AAF enables the user to focus on the
creative production processes rather than struggling with conversions during the authoring and
production phases of the project. Although there are many other issues related to completely transparent
interoperability, the significant benefit that AAF provides to end users is assurance that compositions
output by AAF-compliant applications will be accessible by the right tool for the job, without risk of being
"stranded" by proprietary file format restrictions.

 The authoring applications that can use AAF for interchange include:

• Television studio systems, including picture and sound editors, servers, effects processors,
archiving, and broadcast automation systems

• Post-production systems, including digitization, offline editing, graphics, compositing, and
rendering systems

• Image manipulation applications, including palettizing tools

• Audio production/engineering systems, including multitrack mixers and samplers

16 PRELIMINARY DRAFT AAF Specification Version 1.1

• 3D rendering systems

• Multimedia content creation systems, including scripting, cataloging, titling, logging, and content
repackaging and repurposing applications

• Image and sound recording equipment, including cameras and camcorders, scanners, telecines,
sound dubbers, disk recorders, and data recorders

 Digital Essence Interchange
 The Advanced Authoring Format provides applications with a mechanism to interchange a broad range
of essence formats and metadata, but applications may have interchange restrictions due to other
considerations. For this reason, it is important to understand the different kinds of interchange possible
and to describe the various levels of interchange between authoring applications.

 The following is a general description of the levels of AAF interchange that applications can adopt. For
detailed information on a specific product's AAF support level, see that product's documentation.

• Interchange of limited set of essence data

• Interchange of broad set of essence data with some related metadata

• Interchange of essence data and rich set of metadata including compositions but having limited
support for some essence types

• Full interchange of all essence types and all metadata described in this specification and
preserving any additional private information stored in the AAF file

 The Advanced Authoring Format is designed to be a universal file format for interchange between
systems and applications. It incorporates existing multimedia data types such as video, audio, still
image, text, and graphics. Applications can store application-specific data in an AAF file and can use
AAF as the application's native file format. AAF does not impose a universal format for storing essence
content data. It has some commonly used formats built in, such as CDCI and RGBA images, WAV and
AIFC audio, but also provides an extension framework for new formats or proprietary formats. As
standard formats for essence are adopted by groups such as the SMPTE and the Audio Engineering
Society (AES), AAF will provide built-in support for these formats.

 Data Encapsulation
 At its most basic level, AAF encapsulates and identifies essence data to allow applications to identify the
format used to store essence data. This makes it unnecessary to provide a separate mechanism to
identify the format of the data. For example, AAF can encapsulate and label WAV audio data and RGB
video data.

 Compositional Information
 The actual audio, video, still, and other essence data makes up only part of the information involved in
authoring. There is also compositional information, which describes how sections of audio, video or still
images are combined and modified. Given the many creative decisions involved in composing the
separate elements into a final presentation, interchanging compositional information as well as essence
data is extremely desirable, especially when using a diverse set of authoring tools. AAF includes a rich
base set of essence effects (such as transitions or chroma-key effects), which can be used to modify or

AAF Specification Version 1.1 PRELIMINARY DRAFT 17

transform the essence in a composition. These effects use the same binary plug-in model used to
support codecs, essence handlers, or other digital processes, used to process the essence to create the
desired impact.

 Media Derivation
 One of AAF's strengths is its ability to describe the process by which one kind of media was derived from
another. AAF files contain the information needed to return to an original media source in case it needs
to be used in a different way. For example, when an AAF file contains digital audio and video data whose
original source was film, the AAF file may contain descriptive information about the film source, including
edgecode and in- and out-point information from the intermediate videotape. This type of information is
useful if the content creator needs to repurpose material, for instance, for countries with different
television standards. Derivation information can also describe the creation of computer-generated
essence: if a visual composition was generated from compositing 3D animation and still images, the AAF
file can contain the information to go back to the original animation sources and make changes without
having to regenerate the entire composition.

 Flexibility and Efficiency
 The Advanced Authoring Format is not designed to be a streaming essence format, but it is designed to
be suitable for native capture and playback of essence, and to have flexible storage of large data
objects. For example, AAF allows sections of data to be broken into pieces for storage efficiency, as well
as including external references to essence data. AAF also allows in-place editing; it is not necessary to
rewrite the entire file to make changes to the metadata.

 Extensibility
 The Advanced Authoring Format defines extensible mechanisms for storing metadata and essence data.
This ensures that AAF will be able to include new essence types and essence data formats as they
become commonly used. The extensibility of the effects model allows ISVs or tool vendors to develop a
rich library of new and engaging effects or processes to be utilized with AAF files. The binary plug-in
model gives AAF-compliant applications the flexibility to determine when a given effect or codec has
been referenced inside of the AAF file, to determine if that effect or codec is available, and if not, to find
it and load it on demand.

 Digital Essence Delivery
 In contrast to authoring systems, delivery systems and mechanisms are primarily used to transport and
deliver a complete multimedia program. Although it would be ideal to use a single format for both
authoring and delivery, these processes have different requirements. With authoring as its primary focus,
AAF's metadata persistence enables optimal interchange during the authoring process. By allowing the
content files to be saved without the metadata (that is by stripping out the metadata or flattening the file),
AAF optimizes completed compositions for delivery, without restricting features needed for authoring.

18 PRELIMINARY DRAFT AAF Specification Version 1.1

 From a technical standpoint, digital media content delivery has at least two major considerations: 1)
target playback hardware (TV, audio equipment, PC) and 2) distribution vehicle (Film, Broadcast TV,
DVD and other digital media, and network). When content is delivered, the delivery format is usually
optimized for the particular delivery vehicle (DVD, DTV, and others), and the essence data is often
compressed to conserve space or enable fast download.

 We expect that the content created using AAF in the authoring process will be delivered by many
different vehicles, including broadcast television, packaged media, film, and networks. These delivery
vehicles will use data formats such as baseband video, MPEG-2 Transport Stream, QuickTime 4, and
the Advanced Streaming Format (ASF). These formats do not need the rich set of metadata used during
the authoring process, and can be optimized for delivery by stripping out this metadata or flattening the
file.

 AAF File Format
 The Advanced Authoring Format is a structured container for essence and metadata that provides a
single object-oriented model to interchange a broad variety of essence types including video, audio, still
images, graphics, text, MIDI files, animation, compositional information and event triggers. The AAF
format contains the essence assets and preserves their file-specific intrinsic information, as well as the
authoring information (in- and out-point, volume, pan, time and frame markers, and so on) involving
those essence assets and any interactions between them.

 To meet the rich content authoring and interchange needs, AAF must be a robust, extensible, platform-
independent structured storage file format, able to store a variety of raw essence file formats and the
complex metadata that describes the usage of the essence data, and must be capable of efficient
playback and incremental updates. As the evolution of digital media technology brings the high-end and
low-end creation processes into convergence, AAF must also be thoroughly scalable and usable by the
very high-end professional applications as well as consumer-level applications.

 Structured storage, one of the technical underpinnings of AAF, refers to a data storage architecture that
uses a "file system within a file" architecture. This container format is to be a public domain format,
allowing interested parties to add future developments or enhancements in a due process environment.
Microsoft is specifically upgrading the core technology compound file format on all platforms (Microsoft
Windows®, Apple® Macintosh®, UNIX®) to address the needs of AAF, for instance, files larger than 2
gigabytes and large data block sizes.

 Other important features of AAF include:

• Information about the original sources retained by AAF, so that the resulting edited essence can
be traced back to its original source

• References to external essence files, with files located on remote computers in heterogeneous
networks

• An extensible video and audio effects architecture with a rich set of built-in base effects

• Support for a cross-platform binary plug-in model

 AAF Specification Development
 The Advanced Authoring Format is the product of seven industry-leading companies, each contributing
valuable solutions and technologies. The AAF task force members include Microsoft, Avid, Adobe,
Matrox, Pinnacle Systems, Softimage, and Sonic Foundry. As the Advanced Authoring Format
specification evolves, the promoting companies will concurrently integrate AAF support with their product

AAF Specification Version 1.1 PRELIMINARY DRAFT 19

offerings. In addition, the Advanced Authoring Format Software Development Kit (AAF SDK) will enable
other adopting companies to readily provide AAF support in their products.

20 PRELIMINARY DRAFT AAF Specification Version 1.1

AAF Specification Version 1.1 PRELIMINARY DRAFT 21

 2. Introduction to Objects, Metadata
Objects, and Essence Data

 Advantages of Object Oriented Interchange
 The Advanced Authoring Format provides an object-oriented mechanism to interchange multimedia
information.

 Object-oriented interchange has the following advantages:

• Objects provide a framework for containing and labeling different kinds of information

• Objects make it possible to treat different items in the same way for attributes they share. With
an AAF file:

• one can find out the duration of video data, audio data, MIDI file data, or animation data,
without having to deal with their differences.

• one can play audio or video data either contained within the AAF object, or stored in an
external file and referenced by the AAF object.

• When the information becomes very complex, objects provide a mechanism to describe it in a
structured way. Some simple summary information can be easily obtained.

 Although simple interchange is easily done without using an object model, the object model provides a
framework to handle more complex interchanges. The structured approach of the object model makes it
easier to describe complex data.

 Object Model
 This interchange format provides an object-oriented mechanism to interchange multimedia information.

22 PRELIMINARY DRAFT AAF Specification Version 1.1

 Object-oriented interchange has the following advantages:

• Objects provide a framework for containing and labeling different kinds of information

• Objects make it possible to treat different items in the same way for attributes they share.

• One can find out the duration of video data, audio data, MIDI file data, or animation data, without
having to deal with their differences.

• One can play audio or video data either contained within an object, or stored in an external file and
referenced by an object.

• When the information becomes very complex, objects provide a mechanism to describe it in a
structured way. Some simple summary information can be easily obtained.

 Although simple interchange is easily done without using an object model, the object model provides a
framework to handle more complex interchanges. The structured approach of the object model makes it
easier to describe complex data.

 Header Object
 An interchange file contains:

• Metadata Objects and the objects they have

• Essence data

• One Header object and its related objects

 The Header object and its related objects are in an interchange file so that Metadata Objects and
Essence data, which contain the useful information, may be accessed.

 Each object in an interchange file belongs to a class. The class defines the how the object may be used
and the kind of information it stores. An object consists of a set of properties. Each property has a name,
a type, and a value. An object's class defines the properties that it may have.

 This standard defines classes using a class hierarchy, in which a subclass inherits the properties of its
superclass. All classes are subclasses of the InterchangeObject class.

 Using an object-oriented mechanism makes it easier to extend this interchange standard, and it provides
a flexible framework that will work for interchange between applications with disparate data models.

 The storage wrapper format has exactly one Header object in an AAF file. The Header object owns all
other objects in the file This ownership relationship is specified by the StrongRef,
StrongReferenceVector, and StrongReferenceSet property types.

 There shall be exactly one Header object. The Header object shall specify the following

 a) Byte order used to store data in the file

 b) Date and time that the file was last modified; if the file has not been modified the date and time
that the file was first created shall be specified as the modification date and time

AAF Specification Version 1.1 PRELIMINARY DRAFT 23

 c) ContentStorage object that has all Metadata objects (Mobs) and EssenceData objects

 d) Dictionary object that has all definitions

 e) Version number; files conforming to this document shall specify a version number 1.0; future
revisions of this document may specify a higher version number

 f) An ordered set of identification objects that provide information about the applications that
created or modified the file

 Figure 2-1 illustrates a typical AAF file.

Header

Byte Order
LastModified
Version

Dictionary

Identification

ContentStorage

Composition
Mob

Composition
Mob

MasterMob

MasterMob

SourceMob

SourceMob

EssenceData EssenceData

 Figure 2-1 Typical AAF file with Mobs and EssenceData objects

24 PRELIMINARY DRAFT AAF Specification Version 1.1

 Dictionary
 The Dictionary has ClassDefinitions, PropertyDefinitions, TypeDefinitions, DataDefinitions,
ParameterDefinitions, and EffectDefinitions. If an AAF file contains any classes, properties, types, data
definitions, parameter definitions, or effects that are not defined by this document, the Dictionary shall
have the definition for these extensions to this document.

 Essence Data and Metadata
 Essence data is picture, sound, and other forms of data that can be directly perceived. Metadata is data
that describes essence data, performs some operation on essence data, or provides supplementary
information about the essence data. For example, digitized sound data is essence data, but the data that
describes its format, specifies its duration, and gives it a descriptive name is metadata.

 Much of the creative effort that goes into a multimedia presentation is represented by metadata. How
one section transitions into another, how special effects modify the data we perceive, and how all the
different kinds of primary data are related to each other (such as synchronizing picture and sound) are all
represented as metadata. This interchange format provides a way to interchange this rich set of
metadata.

 Metadata Objects
 A Metadata object (Mob) is an object that has a SMPTE universal label and describes essence. A mob is

 A metadata object (Mob) is an object that has a universal identifer and consists of metadata. Metadata
objects describe how essence data is formatted or how separate pieces of essence data are combined or
composed. Metadata objects are very general and can be used to describe many different kinds of
essence data: video, sound, still picture, text, animation, graphics, and other formats.

 Metadata objects have names and descriptions, but are primarily identified by a unique identifier, which
is called a MobID.

 A Metadata object can describe more than one kind of essence. For example, a metadata object can
have audio, video, still image, and timecode data. A Metadata object has one or more MobSlots. Each
MobSlot can describe only one kind of essence data. A MobSlot can be referenced from outside of the
Metadata object. For example, a metadata object can have two MobSlots with audio, one MobSlot with
video, three MobSlots with still images, and two MobSlots with timecode. Each MobSlot in a Metadata
Object has a MobSlotID that is unique within the Metadata Object. To reference the essence data in a
MobSlot, the MobID and the MobSlotID is used.

 The following sections describe:

• Kinds of Metadata Objects

• How a Metadata Object is associated with essence data

• Kinds of MobSlots

AAF Specification Version 1.1 PRELIMINARY DRAFT 25

• How one Metadata Object references another

• How time-varying essence data, such as audio and video, is described in Metadata Objects and
slots

• How other kinds of essence data, such as still images, are described in Metadata Objects and
slots

 Kinds of Metadata Objects

 There are different kinds of Metadata Objects, which have metadata that is used in different ways.

 Physical Source Metadata Objects, which describe media that was used to generate the digital
essence data. For example a Physical Source Metadata Object can describe a videotape that was
digitized to create digital video data and digital audio data

 File Source Metadata Objects, which describe the digital essence data and provide a mechanism to
locate the digital essence data

 Master Metadata Objects, which provide information that helps locate the File Source Metadata Objects

 Composition Metadata Objects, which contain the creative decisions about how essence data is to be
presented

 Physical Source Metadata Objects and Other Kinds of Source Metadata Objects

 Physical Source Metadata Objects have descriptive information that makes it possible to identify the
actual videotape or film. They can also have timecode or edgecode information used to find the section
of tape or film that corresponds to a frame in the associated digital essence data.

 File Source Metadata Objects

 File Source Metadata Objects describe the format of the digital essence data and provide a mechanism
to access the digital essence data. File Source Metadata Objects have information such as:

• The format used to store the digital essence data, such as WAVE and AIFC for audio and
RGBA, MPEG, and JPEG for video

• The number of samples or frames for digital audio and video data

• The kind of compression used

• The number of pixels and the aspect ratio for picture data

26 PRELIMINARY DRAFT AAF Specification Version 1.1

 Master Metadata Objects

 Master Metadata Objects provide an association between Composition Metadata Objects, which describe
the creative decisions, and File Source Metadata Objects, which describe and identify the essence data.
Master Metadata Objects insulate the Composition Metadata Object from the detailed information about
how the essence data is stored. Master Metadata Objects can describe:

• How video and audio digital essence data are synchronized

• How multiple objects containing digital essence data represent different digital versions of the
same original essence data - the versions may be different in the amount of compression used to
or in the kind of format used to store it

• Effect descriptions, such as color correction, that do not represent a creative decision but instead
correct an error in essence acquisition or conversion

 Composition Metadata Objects

 Composition Metadata Objects describe the creative editing and composing decisions that combine
individual bits of essence data into a presentation. A Composition Metadata Object can describe creative
decisions like the following:

• The audio track contains "Also Sprach Zarathustra" when the video track showed the monolith in
the Stanley Kubrick film 2001: A Space Odyssey

• The pacing of the cuts between shots in Alfred Hitchcock's thrillers

• How different still images are composed into a single image

• How a special effect distorts a video image to make it appear as if it were a reflection on a pool
of water

 Metadata Object Kind Summary

 Table 2-1 summarizes the different kinds of Metadata Objects.

 Table 2-1 – Kinds of Metadata Objects

 Kind of Metadata Object Function

 Composition Metadata Object Describes creative decisions on how to combine or modify essence:
 Decisions on order of essence data
 Decisions on placement of essence data
 Decisions on effects that modify or combine essence data

 Master Metadata Object Collect and possibly synchronize related essence data; provides
indirect access to essence data, which is independent of storage
details

AAF Specification Version 1.1 PRELIMINARY DRAFT 27

 File Source Metadata Object Provides direct access to and describes format of digital essence
data that is (or can be) stored in a computer file

 Physical Source Metadata Object Describes physical media such as a videotape or film

 A CompositionMob describes how to combine individual essence elements to produce a program.

 A SourceMob describes the format and derivation of essence stored in digital forms or stored on physical
media, such as videotape or film. A SourceMob shall have a EssenceDescriptor object that specifies the
format of the essence. If the SourceMob describes essence stored in a computer file, it shall have a
FileDescriptor and is described as a File SourceMob. If the SourceMob describes essence stored on
physical media, such as videotape or film, it is described as a Physical SourceMob.

 A MasterMob describes how individual essence elements are to be synchronized or interleaved.
MasterMobs provide a level of indirection between CompositionMobs and SourceMobs.

 A mob shall have a unique identification, which is called a MobID. A MobID has an globally unique value
and is specified using the AUID property type. If an AAF file refers to information in another AAF file, it
shall identify that information by specifying a MobID.

 A mob shall have one or more MobSlots Each MobSlot describes an element of essence that can be
referenced. A MobSlot shall specify an integer identifier, which is called a MobSlotID. Each MobSlot shall
have a Segment object. A MobSlot can be a TimelineMobSlot, a StaticMobSlot, or an EventMobSlot. A
TimelineMobSlot describesessence that varies over time, such as audio or video data. A StaticMobSlot
describes essence that has a value that has no relationship to time, such as a static image. An
EventMobSlot describes essence that has values at specified points in time, such as instructions to
trigger devices at specified times or instructions to display an interactive region during a specified time in
a program.

 A Mob can reference another Mob to describe the source or derivation of the essence. A Mob refers to
another Mob by having a SourceClip object. An SourceClip object has a weak reference to a Mob using
its identifying MobID value; shall identify a MobSlot within the referenced mob with a MobSlotID value;
and when referencing a TimelineMobSlot shall specify an offset in time within the referenced
TimelineMobSlot.

 If a Mob owned by a ContentStorage object has a reference to a second Mob, then the ContentStorage
shall also own the second Mob.

 A SourceMob may desribe derivation metadata, which describes a physical source that was used to
generate the essence component. If the SourceMob describes derivation metadata, then the SourceMob
shall a SourceClip that specifies the MobID of the Physical SourceMob that describes the physical
media source. If there is no previous generation of physical media source, then the File SourceMob
shall has a SourceClip that specifies a SourceID value of 0, a SourceMobslotID value of 0, and, in
TimelineMobSlots, a StartTime value of 0.

28 PRELIMINARY DRAFT AAF Specification Version 1.1

 A MobID is globally unique. Two Mobs in an AAF file shall not have the same MobID. A mob in one AAF
file may have the same MobID as a mob in another AAF file under either of the following conditions:

 a) One mob is a duplicate of the other

 b) One mob is a modified version of the other subject to the restrictions on modifications described
in this clause

 The type of mob determines the kind of modifications that can be made to it and still retain its identity.

 The information in a file source mob describing the format of essence is immutable and cannot be
modified. Modifications to a file source mob are limited to modifications to descriptive metadata and to
the following limited modifications when the essence is being created or derived:

 When creating essence or deriving one form of essence from another form, it may be
necessary to create or derive the essence in steps. In this case, the SourceMob can be
modified to describe the additional essence that is incorporated in a step. This should be
done in a manner that does not invalidate a reference to a section of the essence that
was previously created.

 A SourceMob describing physical media may describe timecode information and may describe edgecode
information. This timecode and edgecode information describes the timecode and edgecode that is
present in the physical media.

 A MasterMob may be modified by replacing a reference to a SourceMob with a reference to another
SourceMob or it may be modified by inserting a reference to an alternate SourceMob. The modifications
are subject to the restriction that the replacement or alternate SourceMobs should be representations of
the same physical media as the originally referenced SourceMob.

 A CompositionMob may be modified in any way.

 Components
 Components are essence elements. A component in a TimelineMobSlot has a duration expressed in edit
units. The relation between edit units and clock time is determined by the edit rate of the
TimelineMobSlot that has the component. A component provides a value for each edit unit of its
duration.

 The kind of value a component provides is determined by the component’s data kind. A component can
have a data kind that corresponds to a basic kind of essence, such as sound or picture or a kind of
metadata such as timecode.

 The Component class has two subclasses: Segment and Transition.

 The Segment class subclasses include the following:

 a) SourceClip which references a section of a MobSlot in another mob; for example a SourceClip in
a TimelineMobSlot can describe video data

AAF Specification Version 1.1 PRELIMINARY DRAFT 29

 b) Sequence which specifies that its set components are arranged in a sequential order; in a
TimelineMobSlot, the components are arranged in sequential time order

 d) Effect which specifies that either two or more Segments should be combined using a specified
effect or that one Segment should be modified using a specified effect

 e) Filler which defines an unspecified value for its duration

 A Transition object shall be a member of a Sequence’s set of Components and it shall be preceded by a
Segment and followed by a Segment. A Transition causes the preceding and following Segments to be
overlapped in time and to be combined by the Transition’s effect.

 File SourceMobs and EssenceData objects
 A File SourceMob describes essence and is used to access it, but does not own it. This document
separates the description and the storage of the essence for the following reasons:

 a) Audio and video data and other essence can be very large and may need to be stored in a separate
file, on a different disk, over a network, or temporarily deleted to free disk space. Having the File
SourceMob separate from the essence provides more flexible storage options while still allowing the
composition to use the same access mechanism.

 b) Audio and video data or other essence may be used in more than one CompositionMob and these
CompositionMobs can be in different files. Separating the File SourceMob from the essence means that
only the information in the File SourceMob needs to be duplicated.

 The essence described by a File SourceMob can be stored in three ways:

 1. In a EssenceData object in the same file as the SourceMob

 2. In a EssenceData object in a different file, which must contain a duplicate of the SourceMob

 3. In a data file that is not a wrapper file

 The MobID connects the File SourceMob to the essence if it is stored in a EssenceData object.. The File
SourceMob and its corresponding EssenceData object have the same MobID value.

 If the essence is stored in a data file that is not a wrapper file, then the data file is identified by locators in
the essence descriptor. However, since there is no MobID stored with this essence, it is difficult to
identify a data file if the file has been moved or renamed.

 How File Source Metadata Objects are Associated with Digital Essence Data

 File Source Metadata Objects and Digital essence data are associated by having the same MobID. Since
the ContentStorage object that has all the Metadata Objects and Essence data objects in the file,

30 PRELIMINARY DRAFT AAF Specification Version 1.1

applications can find the Essence data object associated with a File Source Metadata Object by
searching for the appropriate MobID.

 Digital essence data may also be stored in a non-container file. In some cases, the digital essence file
format has a mechanism to store a MobID. In these cases, applications can still use the MobID to
associate the File Source Metadata Object with the digital essence data. When there is no mechanism to
store a MobID with the digital essence data, interchange files use specialized locator objects to associate
a File Source Metadata Object with the digital essence data.

 Kinds of MobSlots in Metadata Objects

 Each kind of MobSlot defines a specific relationship between essence data and time. This standard
currently defines the following kinds of MobSlots:

• Static MobSlot

• Timeline MobSlot

• Event MobSlot

 A Static MobSlot describes essence that does not vary over time. A Static MobSlot may describe a static
image or some other static essence such as text.

 A Timeline MobSlot describes essence that varies with a fixed, predictable interval or continuously over
time. For example, digital audio, video, and film have a fixed, predictable sample or frame rate, and
analog audio varies continuously over time.

 An Event MobSlot describes essence that has an unpredictable relationship with respect to time. GPI
(General Purpose Interface) events and MIDI are examples of irregularly timed events.

 Table 2-2 summarizes the different kinds of MobSlots.

 Table 2-2: Kinds of MobSlots

 Kind of MobSlot Function

 Static MobSlot Describes essence data that has no specific relationship to time, such as static
images or static text.

 Timeline MobSlot Describes essence data that has a fixed or continuous relationship with time,
such as audio, film, video, timecode, and edgecode

 Event MobSlot Describes essence data that has an irregular relationship with respect to time,
such as GPI events, MIDI, interactive events, and user comments associated
with specific times

 How and Why One Metadata Object Refers to Another Metadata Object

 A Metadata Object can have a reference to a MobSlot in another Metadata Object. Metadata Objects
may reference other Metadata Objects, for example, to identify a original and unmodified essence data.

AAF Specification Version 1.1 PRELIMINARY DRAFT 31

A Source Reference identifies the referenced Metadata Object by specifying its MobID and specifies the
associated MobSlot by specifying its MobID.

 If a Metadata Object describes the original essence data, it has Source Clips that specify a null MobID,
indicating that there is no previous generation of data.

 Source Clips in Physical Source Metadata Objects identify the MobID of a previous physical source of
physical media. For example, a videotape Source Metadata Object has a Source Clip that specifies the
Physical Source Metadata Object describing the film that was used to generate the videotape.

 Source Clips in File Source Metadata Objects specify the MobID of a Physical Source Metadata Object..
For example, a video File Source Metadata Object has a Source Clip that specifies the Physical Source
Metadata Object describing a videotape used to generate the digital video data.

 Source Clips in Composition Metadata Objects specify the MobID of the Master Metadata Object, and
are used to represent pieces of digital essence data. The Master Metadata Object provides a level of
indirection between the digital essence data and the objects that refer to them.

 A Composition Metadata Object is the result of the creative editing decision-making process. The original
and unmodified essence data is collection of digital essence data combined and modified as described
by the Composition Metadata Object.

 In summary, Metadata Objects describe not only essence data, but through their relationships between
one another, they describe how one form of essence data was derived from another.

 Figure 2-1 illustrates how a Source Clip in a Composition Mob references a Master Mob. The Master
Mob references the File Source Mob, which references the tape mob. Finally, the tape mob references
the film mob.

32 PRELIMINARY DRAFT AAF Specification Version 1.1

ContentStorage

MasterMob FileMob TapeMob

EssenceData EssenceData

SourceClip

SourceClip

SourceClip

CompositionMob

TimelineMobSlot

TimelineMobSlot Sequence

Sequence

SourceClip
SourceClip

SourceClip

FilmMob

EssenceData EssenceData

 Figure 2-1 Mob references define the derivation of essence

AAF Specification Version 1.1 PRELIMINARY DRAFT 33

 Static Image Essence in Metadata Objects

 Static image essence is described by a Static MobSlot. Static image essence has no relation to time;
consequently, Static MobSlots do not have an edit rate and the objects that they have do not specify a
duration.

 In a Static MobSlot, a Source Clip refers to another Static MobSlot by specifying its MobID and
MobSlotID but does not specify an offset in time or a duration as in a Timeline Slot.

 Composition Metadata Objects that have only Static MobSlots specify the editing decisions involved in
composing static images. Figure 2-2 illustrates a typical Composition Metadata Object that describes a
static image and the static components used to compose it. The static images are combined by using
static effects to transform the individual images and to combine them into a single image.

OperationGroup

Static Image Order Effect

SourceClip

OperationGroup

Transform Effect

Group

Transform Effect
SourceClip

SourceClip

SourceClip

CompositionMob

StaticMobSlot

InputMedia

 Figure 2-2 Composition Metadata Object with Static Essence

34 PRELIMINARY DRAFT AAF Specification Version 1.1

 Time-varying Video and Audio Essence in Metadata Objects

 Audio and video essence data is represented in Timeline MobSlots. These are MobSlots that represent
time-varying data where this data has a fixed relationship with respect to time. For example, NTSC video
has a framerate of approximately 29.97 frames per second. Each Timeline MobSlot specifies an edit rate
which defines the unit of time for objects referred to by that particular Timeline MobSlot. Edit rates are
specified as a rational(a real number expressed as two integers: a denominator and a numerator). For
example, NTSC video's edit rate is typically specified by an edit rate of 30000/1001.

 In Timeline MobSlots, a source clip references a Timeline MobSlot in another Metadata Object by
specifying its MobID and Timeline MobSlot ID number and by specifying a subsection of the Timeline
MobSlot with an offset in time and a duration. For example, a source clip in a composition Metadata
Object can reference a subsection of audio or video data by referencing a section of that essence data's
master Metadata Object.

 A simple Composition Metadata Object has audio and video Timeline MobSlots where each Timeline
MobSlot has a sequence of source clips. The sequence specifies that the source clips should be played
consecutively, one after another. Each Timeline MobSlot in the Composition Metadata Object is to be
played simultaneously with other co-timed Timeline MobSlots.

AAF Specification Version 1.1 PRELIMINARY DRAFT 35

SourceClip

SourceClip

SourceClip

SourceClip

CompositionMob

TimelineMobSlot

TimelineMobSlot

TimelineMobSlot

Sequence

Sequence

Sequence

SourceClip

SourceClip

SourceClip

SourceClip

Picture

Sound

Sound

36 PRELIMINARY DRAFT AAF Specification Version 1.1

 Figure 2-3: Structure of Composition Metadata Object with Timeline MobSlots

 Each source clip in a sequence identifies the audio or video data to be played and specifies its duration,
but does not specify the time at which it should be played in the composition. The starting time of a
section in a sequence depends on the number and duration of the sections that precede it. A source clip
can be thought of as a section of videotape or film to be spliced with other sections. By examining the
section itself, may listen to its audio or view its frames, but one can not tell where it will appear in the
finished piece until the preceding sections in the sequence are examined.

 Figure 2-4 illustrates how the source clips in a sequence appear in a timeline view of a composition.

SourceClip

+Length : Length = 80

SourceClip

+Length : Length = 100

CompositionMob

TimelineMobSlot

Sequence

+Length : Length = 305

SourceClip

+Length : Length = 125

SourceClip

Length : Length = 100

SourceClip

Length : Length = 125

SourceClip

Length : Length = 80

Timeline View
 0 .. .

 Figure 2-4: Sequence in Composition Metadata Object

AAF Specification Version 1.1 PRELIMINARY DRAFT 37

 Event Data in Metadata Objects

 Events typically specify an action or define a behavior that takes place at a specified time. Typically,
Event MobSlots specify events that are associated with the time-varying essence in a parallel Timeline
MobSlot. Each Event MobSlot describes one kind of event. In each Event MobSlot, no two events should
occur at the same time. Figure 2-5 illustrates a Composition Metadata Object that has a Timeline
MobSlot with video essence data, an Event MobSlot that has comments defined for specific points in
time, and an Event MobSlot that defines interactive areas in the resultant image.

38 PRELIMINARY DRAFT AAF Specification Version 1.1

IntraFrameMarker

CommentMarker

SourceClip

SourceClip

CompositionMob

TimelineMobSlot

EventMobSlot

EventMobSlot

Sequence

Sequence

Sequence

SourceClip

SourceClip

IntraFrameMarker

CommentMarker

 Figure 2-5 Composition Metadata Object with Video Essence and Events

AAF Specification Version 1.1 PRELIMINARY DRAFT 39

 3. Composition Metadata Objects
 This chapter describes the AAF Composition Metadata Object (Mob), which is the AAF object that
describes editing information.

 Composition Metadata Object Basics
 Composition Metadata Objects (Mobs) describe the creative editing and composing decisions that
combine the individual pieces of essence data into a unified program. A Composition Metadata Object
can describe editing decisions that vary in complexity from very simple compositions, which combine a
few pieces of essence in order, to very complex compositions that have complex, layered effects and
thousands of individual pieces of essence that are combined in various ways. Composition Metadata
Objects are designed to be capable of describing creative human decisions; consequently, their
complexity is limited only by the limits of our imagination.

 Composition Metadata Objects do not directly reference the essence data that they combine to form a
program. Composition Metadata Objects reference the basic essence data with Source Clips that identify
the Master Metadata Object and File Source Metadata Objects that describe the essence data. The
Master Metadata Objects and File Source Metadata Objects have the information that is used to read
and write the essence data.

 In addition to Source Clips, Composition Metadata Objects can have Sequences, Effects, Transitions,
and other objects that combine or modify the basic essence data to produce the elements of essence
data that go into the final program. The essence data that results from these transformations can be
stored in the file, but typically is generated by the application from the basic essence data and is not
stored until the distribution media is generated from the Composition Metadata Object.

 Composition Metadata Objects consist of MobSlots that describe a set of editing decisions that can be
referenced from outside of the Metadata Object. MobSlots in a Composition Metadata Object typically
describe sets of editing decisions that are combined in some form to produce the final program.

40 PRELIMINARY DRAFT AAF Specification Version 1.1

 MobSlots can describe timeline essence data, such as audio and video, static essence data, such as
static images, and other kinds of data, such as text or events.

 A Composition Metadata Object can have MobSlots that all describe timeline essence data, that all
describe static essence data, or that describe different kinds of essence data.

 A simple Composition Metadata Object could have two Timeline MobSlots describing audio data and one
Timeline MobSlot describing video data. The edited program produced by this Composition Metadata
Object would consist of three synchronized tracks: two audio and one video.

 Another simple Composition Metadata Object could have one Static MobSlot , describing a single static
image composed by combining a set of static images.

 A complex Composition Metadata Object could have Timeline Mob Slots, Static Mob Slots, and Event
Mob Slots. The edited program produced by this Composition Metadata Object could have elements
from each of these Mob Slots combined in some form by the objects in the Composition Metadata
Object.

 Timeline Mob Slots

 Timeline Mob Slots typically have a Sequence of audio or video segments. Each segment can consist of
a simple Source Clip or a complex hierarchy of Effects. Figure 3-1 is a containment diagram of a
Composition Metadata Object that has only Timeline Mob Slots with audio and video data.

AAF Specification Version 1.1 PRELIMINARY DRAFT 41

CompositionMob

TimelineMobSlot
1..n

{ordered}

Sequence

1..n

{ordered}

Transition Segment

Component

OperationGroup Filler NestedScope ScopeReference Sequence SourceClipSelector

 Figure 3-1: Containment Diagram for Composition Metadata Object with Timeline Mob Slots

 Sequences

 A Sequence can have the following components:

• Source Clip: Specifies a section of essence or other time-varying data and identifies the Mob
Slot in another Metadata Object or within the same Metadata Object that describes the essence.

• Filler: Specifies an unknown value for the Component’s duration. Typically, a Filler is used in a
Sequence to allow positioning of a Segment when not all of the preceding material has been
specified. Another typical use of Filler objects is to fill time in Mob Slots and Nested Scope
Segments that are not referenced or played.

• Transition: Causes two adjacent Segments to overlap in time and to be combined by an effect.

• EffectDefinition property of an Effect: Specifies an effect to be used in a Composition Metadata
Object; specifies kind of effect, input essence segments, and control arguments.

• Sequence: A Sequence within a Sequence combines a set of Components into a single segment,
which is then treated as a unit in the outer Sequence.

42 PRELIMINARY DRAFT AAF Specification Version 1.1

• Nested Scope: Defines a scope of slots that can reference each other. The Nested Scope object
produces the values of the last slot within it. Typically, Nested Scopes are used to enable
layering or to allow a component to be shared.

• Scope Reference: Refers to a section in a Nested Scope slot.

• Selector: Specifies a selected Segment and preserves references to some alternative Segments
that were available during the editing session. The alternative Segments can be ignored while
playing a Composition Metadata Object because they do not effect the value of the Selector
object and cannot be referenced from outside of it. The alternative Segments can be presented
to the user when the Composition Metadata Object is being edited. Typically, a Selector object is
used to present alternative presentations of the same content, such as alternate camera angles
of the same scene.

 The Sequence object combines a series of timeline Components in sequential order. If the Sequence has
only Segments, each Segment is played sequentially after the Segment that precedes it. The time in the
Composition Metadata Object that a Segment starts is determined by the Components that precede it in
the Sequence.

 Transitions

 A Transition can occur in a Sequence between two Segments. The Transition causes the preceding and
following Segments to overlap in time. The Transition specifies an effect that is used to combine the
overlapping Segments. Figure 3-2 illustrates the Sequence containment showing Transition, which itself
has an Effect.

AAF Specification Version 1.1 PRELIMINARY DRAFT 43

Sequence

Segment

1..*

{ordered}

OperationGroup Filler NestedScope ScopeReference Sequence SourceClip

Component

Transition

OperationGroup

{Transitions occur between
two Segments}

Selector

 Figure 3-2: Containment Diagram of Sequence with Transition

 Figure 3-3 shows an instance diagram of a Sequence containing Source Clips and a Transition. It shows
the timeline view of the Sequence, in which the Transitions cause the two Source Clips to overlap

44 PRELIMINARY DRAFT AAF Specification Version 1.1

th = 100

urceClip

SourceClip

+Length : Length = 80

SourceClip

+Length : Length = 100

CompositionMob

TimelineMobSlot

Sequence

+Length : Length = 230

Transition

+Length : Length = 75

SourceClip

+Length : Length = 125

SourceClip

Length : Length = 100

SourceClip

Length : Length = 125

SourceClip

Length : Length = 80

Transition

Length : Length = 75

SourceClip

Length : Length = 80

SourceClip

Length : Lengt

Transition

Length : Length = 75

Timeline View

0 .. .

 Figure 3-3: Transition Cause Segments to Overlap

 To calculate the duration of a Sequence with Transitions, you add the durations of the Segments and
then subtract the duration of the Transitions. In the example in Figure 3-3, the duration of the Sequence
is 125 + 100 + 80 — 75, which equals 230.

AAF Specification Version 1.1 PRELIMINARY DRAFT 45

 If you are inserting a Transition between two Source Clips, and you want to preserve the overall duration
of the two Segments, you must adjust the Source Clip’s Length and StartTime values.

 Cuts and the Transition Cut Point

 Transitions also specify a CutPoint. The CutPoint has no direct effect on the results specified by a
Transition, but the CutPoint provides information that is useful if an application wishes to remove or
temporarily replace the transition. The CutPoint represents the time within the Transition that the
preceding Segment should end and the following one begins, if you remove the Transition and replace it
with a cut. To remove a Transition and preserve the absolute time positions of both Segments, your
application should trim the end of the preceding Segment by an amount equal to the Transition Length
minus the CutPoint offset, and trim the beginning of the succeeding Segment by an amount equal to the
CutPoint offset.

 Treating Transitions As Cuts

 If you cannot play a Transition’s effect, you should treat it as a cut. Treating it as a cut means that you
should play the two Segments surrounding the transition as if they had been trimmed, as described in the
preceding paragraphs. If you play the two Segments without trimming, the total elapsed time for them will
be greater than it should be, which can cause synchronization problems.

 Restriction on Overlapping Transitions

 Transitions can occur only between two Segments. In addition, the Segment that precedes the Transition
and the Segment that follows the Transition must each have a Length that is greater than or equal to the
Length of the Transition. If a Segment has a Transition before it and after it, the Segment’s Length must
be greater than or equal to the sum of the Length of each of the two Transitions. This ensures that
Transitions do not overlap. These restrictions allow applications to treat Transitions in a uniform manner
and to avoid ambiguous constructions.

 It is possible to create Sequences that appear to start or end with Transitions or that appear to have
overlapping Transitions. To create the appearance of a Transition at the beginning of a Sequence,
precede the Transition with a Filler object that has the same length as the Transition. To create the
appearance of a Transition at the end of a Sequence, follow the Transition with a Filler object that has
the same length as the Transition.

 To create the appearance of overlapping Transitions, you nest the Transitions by using a Sequence
within another Sequence. You can put two Segments separated by a Transition in the inner Sequence.
Then you can use this Sequence object as the Segment before or after another Transition. The
Transitions will appear to be overlapping.

46 PRELIMINARY DRAFT AAF Specification Version 1.1

 Static Mob Slots

 Static Mob Slots describe Essence data that has no relationship to time. Consequently, Static Mob Slots
do not specify an edit rate and Segments in Static Mob Slots do not have a duration. Figure 3-4 is a
containment diagram for a Composition Metadata Object that has only Static Mob Slots.

CompositionMob

StaticMobSlot
1..n

{ordered}

Segment

OperationGroup NestedScope ScopeReference SourceClip Selector

 Figure 3-4: Containment Diagram for Composition Metadata Objects with Static Mob Slots

 Combining Different Types of Mob Slots

 A Composition Metadata Object can have Timeline Mob Slots, Static Mob Slots, and Event Mob Slots.
Although each kind of slot can only have Segments with the corresponding relationship to time, it is
possible for a Mob Slot to have a reference to another kind of Mob Slot. For example, a video Timeline
Mob Slot can have a reference to an image in a Static Mob Slot.

 A Mob Slot can reference a different kind of Mob Slot by containing a Source Clip referencing the other
Mob Slot or by containing an Effect with a Source Clip referencing the other Mob Slot. The Source Clip
can reference Mob Slots in other Metadata Objects or can reference other Mob Slots in the same
Metadata Object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 47

 Conversion Operations

 The Source Clip provides the conversion operation in some simple cases:

• Taking an instantaneous value (such as a still frame) from a Timeline Component.

• Repeating a Static Segment to create a Timeline Segment.

 In these cases, the Data Kind of the two Segments must be the same. In all other cases, an explicit
operation is required. The Operation Definition must explicitly allow inputs of the appropriate temporal
nature and produce a result of the required temporal nature. Conversion operations are summarized in
Table 3-1.

 Table 3-1: Static, Timeline, and Event Conversions

 Convert to:

 Convert from:

 Static Event Timeline

 Static Source Clip plus
Operation

 Source Clip (Start Time ignored)

 Event Source Clip plus
Operation

 Source Clip plus Operation

 Timeline Source Clip
(Length ignored)

 Source Clip plus
Operation

 Operations

 This interchange standard includes a set of essence operation effects (such as transitions or chroma-key
effects), which can be used to modify or transform the essence to produce a Segment of essence.
Operations can act on and produce any kind of essence: timeline, static, or event. The essence that an
effect acts on is called its input essence. These effects use the same binary plug-in model used to
support codecs, essence handlers, or other digital processes to be used to process the essence to create
the desired impact. The binary plug-in model gives applications the flexibility to determine when a given
effect or codec has been referenced inside of the file and to determine if that effect or codec is available,
and if not, to find it and load it on demand.

 Many common effects act on timeline or static essence and produce the same kind of essence as they
act on. For example, a picture-in-picture effect can act on either timeline video or static image essence.
It combines two input essence Segments to produce a resulting Segment. A picture-in-picture effect with
timeline video input essence Segments produces a timeline video result. A picture-in-picture effect with
static image input essence Segments produces a static image result. There are also effects than convert
from one kind of essence to another.

 A specific usage of an effect in an file is described by an OperationGroup object. The OperationGroup
that produces a segment is made up of the following:

• Has an ordered set of input essence Segments.

48 PRELIMINARY DRAFT AAF Specification Version 1.1

• Is associated with an OperationDefinition object.

• Has a set of effect control parameters.

• May optionally have a rendered version of the Operation.

 Effect Input Essence Segments

 Most common effects have either one or two input essence Segments. Some effects can have more
than two input essence Segments, and there are effects that have no input essence Segments.

 Filter Effects with One Input Essence Segment

 An effect that has one input essence Segment is often called a filter effect because it takes its input
essence Segment, modifies it by passing it through some kind of filter, and then produces a resulting
essence Segment. Some example picture filter effects are a blur effect or a color correction effect. An
example audio filter effect is a gain effect.

 If an application cannot generate a filter effect, it can usually substitute the input essence Segment for
the effect result and have a meaningful, if not completely accurate, output. You cannot substitute the
input essence for time-warp effects. Time-warp effects are timeline essence effects where the duration of
the input essence Segment is different from the duration of the effect result. Slow motion and freeze-
frame effects are examples of time-warp effects.

 Effects with Two Input Essence Segments

 Effects with two input essence Segments combine the Segments to produce a single resulting Segment.
For example, a picture-in-picture or a superimpose effect takes two images and combines them to
produce a single image.

 A transition effect is a timeline effect with two input essence Segments that are intended to change from
one input essence Segment to another. Examples of transition effects are wipes and audio crossfades.
For more information about effects in transitions, see the Transition Effects section in this chapter.

 Some effects can have any number (greater than zero) of Segments. These effects typically are used to
add together a number of essence Segments. For example, the audio mixdown effect takes any number
of audio Segments and adds them to produce a combined audio Segment. Another example is the
image ordering effect that takes a set of pictures (static or timeline) and combines them by placing one in
front of another in the order in which they are specified.

 Effect Definitions

 Effects are identified by a AUID, a unique identifier. The file also contains an EffectDefinition object that
provides additional information about the effect. It identifies the effect it is defining with a AUID and
includes the following additional information:

• Effect name and description for display purposes

• Number of essence input segments

AAF Specification Version 1.1 PRELIMINARY DRAFT 49

• Control code definitions that define the effect’s parameters

• Information to find plug-in code to process the effect

 For more information on defining effects, see the Defining Effect section.

 Effect Control Parameters

 Effect controls are contained in a set of Parameters. Each Parameter identifies the purpose of the
parameter by specifying a parameter AUID and specifies either a single constant or a varying value. The
Effect Definition lists the parameters that can be specified for the Effect.

 A constant value is specified by an ConstantValue object, which has a single value. For timeline effects,
this means the value is constant over time.

 For timeline effects, a varying value is specified by an VaryingValue object, which specifies a value that
varies over time. Note that it is possible to define parameters whose value varies over a domain other
than time. For example, a color-correction effect can have a parameter whose value varies depending
on the color space of a pixel in an image.

 An VaryingValue object specifies its values by containing an ordered set of Control Points. Each Control
Point specifies a value for a specific point in time. The Control Point identifies the point in time by
specifying a rational number where zero represents the time at the beginning of the effect and 1/1
represents the time at the end of the effect.

 A Varying Value specifies how to interpolate the effect between the time points whose value is specified
by a Control Point. A Varying Value can have linear, constant, B-Spline, logarithmic, or Bezier
interpolation.

• Linear interpolation means that the parameter varies in a straight line between two values.

• Constant interpolation means that the parameter holds a constant value until the next Control
Point is reached.

• B-spline, logarithmic, and Bezier interpolations are mathematical formulas to create a curve
between two points.

 If two Control Points specify the same time, the second defines the value at that time. The first is used
only to interpolate for times before the specified time.

 If the first Control Point has a time greater than zero, its value is extrapolated as a constant backward to
zero. If the last Control Point has a time less than 1/1, its value is extrapolated as a constant forward to
1/1.

50 PRELIMINARY DRAFT AAF Specification Version 1.1

 Rendered Effect Essence

 Sometimes it is desirable to compute the results of an Effect once and store them. When the Effect is
being played or accessed later, the results can be retrieved quickly and repeatedly without having to
perform complex calculations.

 A rendered version is digital essence data that can be played to produce the effect. The Effect identifies
a rendered effect by containing a Source Clip that identifies the Master Metadata Object and File Source
Metadata Object that describe the rendered essence. If there is more than one implementation of a
rendering, the Master Metadata Object could have a Essence Effect object.

 Effects in Transitions

 The Effect that is used in a Transition does not have any explicitly specified input essence Segments.
Instead, the Effect gets its input essence Segments from the Segment that precedes it and the Segment
that follows the Transition object in the Sequence.

 In most cases, effects used in Transitions are defined to have two input essence Segments and a
special-level parameter. When an effect is used in a Transition, the following specify its behavior:

• The outgoing essence is the first, or A, input essence Segment.

• The incoming essence is the second, or B, input essence Segment.

• If the level parameter is not explicitly specified, its default value is a Varying Value with two
Control Points: a value of zero at time zero, and a value of 1/1 at time 1/1.

 Note that when an effect is used in a transition, it should not have any explicit input essence Segments.
But an effect in a Transition can override the default values for the level parameter.

 Scope and References

 Scope Reference objects enable you to reference from within one slot the values produced by another
slot. A Scope Reference can reference a Segment in a Nested Scope, or it can reference a Segment in
another Mob Slot. It can refer to a Segment in the same Nested Scope that it is defined in or in an outer
Nested Scope that has it.

 Although Scope References can be used to reference other Mob Slots in the same Metadata Object,
they should only be used to reference Mob Slots with the same data kind and the same relationship to
time. If you need to reference a Mob Slot with another relationship with time, you should use a Source
Clip than does not specify a MobID parameter.

 Why Use Scope References

 Two reasons to use Scope References are:

• To layer sections of essence that overlap.

• To share the values produced by a slot in different contexts.

AAF Specification Version 1.1 PRELIMINARY DRAFT 51

 Although you can layer overlapping sections of essence without using Scope References, you lose some
information that makes it harder for the user to make changes. For example, consider the following
sequence of shots that a user wants to appear in a production:

 1. A title superimposed on a long shot of a Mediterranean island.

 2. A shot of the star inserted in a picture-in-picture effect over the island shot.

 3. Ending with the island shot.

 You could get this sequence of shots without using Scope References by creating the following
Sequence:

 1. Effect for title effect with the Source Clip for the island. shot

 2. Effect for picture-in-picture effect.

 3. Another Source Clip for the island shot.

 Within each of the Effects, you would specify one of the input segments to have a Source Clip of the
island shot. The problem with this way of implementing the Sequence is that there are three Source Clips
that refer to adjacent sections of the same scene with no linkage indicated in the file. If you change the
length of one of the Source Clips or Effects, you need to change the other Segments in the Sequence to
ensure continuity.

 Alternatively, you could specify this with Nested Scope and Scope Reference objects where the Nested
Scope would contain:

• One slot that has the full island shot.

• One slot that had a Sequence containing the two Effects and a Scope Reference to the other
slot. Each of the Effects specifies one of its input essence Segments with a Scope Reference to
the other slot.

 The length of any of the Segments in the second slot can be changed without losing the continuity of the
background island scene. The user can also easily replace the background island scene and retain the
edits in the second slot.

 Another reason to use Scope References is to share the values produced by one slot in different
contexts. An example of this is an effect that produces a rotating cube where each side of the cube
shows the Segment from a different Effect Slot. If you want some of the sides to show the same
Segment, you can use Scope References and put the desired Segment in another slot.

 How to Specify Scope References

 The Metadata Object defines a scope consisting of the ordered set of Mob Slots. A Scope Reference
object in a Mob Slot can specify any Mob Slot that precedes it within the ordered set. Nested Scope
objects define scopes that are limited to the Components contained within the Nested Scope object’s
slots. A Scope Reference is specified with a relative scope and a relative slot.

52 PRELIMINARY DRAFT AAF Specification Version 1.1

 Relative scope is specified as an unsigned integer. It specifies the number of Nested Scopes that you
must pass through to find the referenced scope. A value of zero specifies the current scope, which is the
innermost Nested Scope object that has the Scope Reference or the Metadata Object scope if no Nested
Scope object has it. A relative scope value of one specifies that you must pass through the Nested
Scope object containing the Scope Reference to find the Nested Scope or Metadata Object scope that
has it.

 Relative slot is specified as a positive integer. It specifies the number of preceding slots that you must
pass to find the referenced slot within the specified relative scope. A value of one specifies the
immediately previous slot.

 A Scope Reference object returns the same time-varying values as the corresponding section of the slot
that it references. The corresponding section is the one that occupies the same time period as the Scope
Reference.

 If a Scope Reference specifies a Mob Slot, the corresponding section of the slot is the time span that has
the equivalent starting position from the beginning of the Mob Slot and the equivalent length as the
Scope Reference object has within its Mob Slot. If the specified Mob Slot has a different edit rate from
the Mob Slot containing the Scope Reference, the starting position and duration are converted to the
specified Mob Slot’s edit units to find the corresponding section.

 If a Scope Reference specifies a Nested Scope slot, the corresponding section of the slot is the one that
has the same starting position offset from the beginning of the Nested Scope segments and the same
duration as the Scope Reference object has in the specified scope.

 Other Composition Metadata Object Features

 This section describes how to perform the following in Composition Metadata Objects:

• Preserve editing choices

• Use audio fades

 Preserving Editing Choices with Selectors

 In some cases, an application may need to preserve alternatives that were presented to the user and not
chosen. For example, if a scene was shot with multiple cameras simultaneously, the user can choose the
video from the preferred camera angle. In a future editing session, the user may wish to change the
video to one that was shot from another camera. By preserving the original choices in the Composition
Metadata Object, your application can make it easier for the user to find the alternatives.

 The Selector object specifies a selected Segment and a set of alternative Segments. When playing a
Composition Metadata Object, an application treats the Selector object as if it were the selected
Segment. However, when a user wants to edit the Composition Metadata Object, the application can
present the alternative Segments as well as the selected one.

AAF Specification Version 1.1 PRELIMINARY DRAFT 53

 Using Audio Fade In and Fade Out

 The Source Clip FadeInLength, FadeInType, FadeOutLength, and FadeOutType properties allow you to
specify audio fades without an Effect object. Audio fades use these Source Clip properties instead of
Effect properties of the Effect for the following reasons:

• Some applications use audio fades on every Segment of audio to avoid noise when cutting from
one audio Segment to another. Using the Source Clip properties rather than Effect properties
simplifies the Composition Metadata Object structure.

• Audio fades typically have simple controls arguments and do not need the time-varying control
arguments that are allowed in Effects.

However, if you want to create a crossfade, you need to do one of the following:

• Insert a Transition object with the MonoAudioMixdown effect between the two audio source clips
to cause them to overlap. If the FadeOutLength of the preceding Source Clip is not equal to the
FadeInLength of the following Source Clip, the crossfade will be asymmetric.

 Specify the overlapping audio Source Clips as different input essence Segments in a
MonoAudioMixdown of an Effect.

54 PRELIMINARY DRAFT AAF Specification Version 1.1

AAF Specification Version 1.1 PRELIMINARY DRAFT 55

 4. Describing and Storing Essence
 This chapter shows how AAF files describe essence.

 Overview of Essence
 AAF files can describe and contain a broad range of essence types and formats. These essence types
include the following:

• Video essence in various formats (RGBA, YCbCr, MPEG)

• Sampled audio essence in various formats (AIFC, Broadcast WAVE)

• Static image essence

• MIDI music essence

• Text essence in various formats

• Compound essence formats (DV, MPEG transport streams, ASF)

 In addition to the essence formats described in this document, this interchange standard provides a
general mechanism for describing essence formats and defines a plug-in mechanism that allows
applications to import and export new types of essence data.

 This standard defines the metadata in structures that are independent of the storage details of the
essence format. This independence enables Composition Metadata Objects to reference essence data
independently of its format. A Composition Metadata Object describes editing decisions in a manner that
is independent of the following:

• Byte order of the essence (AIFC and WAVE)

• Whether the essence data is contained within the file or is in another container file

• Whether the digital essence data is accessible

56 PRELIMINARY DRAFT AAF Specification Version 1.1

• Format or compression used to store the digital essence data

 This interchange standard makes it easier for applications to handle different formats by providing a
layer that is common to all.

 Essence source information describes the format of audio and video digital data, how the digital data was
derived from tape or film, and the format of the tape and film. Source information can also include tape
timecode, film edgecode data, and pulldown information.

 This interchange standard uses the following mechanisms to describe essence:

• Master Metadata Objects provide a level of indirection between Composition Metadata
Objects and File Source Metadata Objects and can synchronize File Source Metadata
Objects.

• Source Metadata Objects describe digital essence data stored in files or a physical
media source such as videotape, audio tape, and film. The Source Metadata Object has
the following objects that provide information about the essence:

• Mob Slots specify the number of tracks in the essence source, the duration of
each track, the edit rate, and the Source Metadata Object that describes the
previous generation of essence. In addition, Mob Slots can have timecode and
edge code information.

• Essence Descriptors describe the kind of essence and the format of the essence
and specify whether the Source Metadata Objects describe digital essence data
stored in files or a physical media source.

• Pulldown objects describe how essence is converted between a film speed and a
video speed.

• Essence data objects contain the digital essence data and provide supplementary
information such as frame indexes for compressed digital essence data.

 This chapter contains the following sections:

• Describing Essence with Master Metadata Objects

• Describing Essence with Source Metadata Objects

• Describing Timecode

• Describing Essence with Pulldown

 Describing Essence with Master Metadata Objects

 A Master Metadata Object provides a level of indirection for accessing Source Metadata Objects from
Composition Metadata Objects. The essence associated with a Source Metadata Object is immutable.
Consequently, if you must make any changes to the essence data, you must create a new Source
Metadata Object with a new unique MobID. Typical reasons to change the essence data include
redigitizing to extend the section of the essence included in the file, redigitizing to change the
compression used to create the digital essence data, and redigitizing to change the format used to store
the essence data, such as from AIFF audio data to WAVE audio data. A Composition Metadata Object
may have many Source Clip objects that reference essence data updating every Source Clip in the
Composition Metadata Object each time the essence is redigitized would be inefficient. By having the

AAF Specification Version 1.1 PRELIMINARY DRAFT 57

Composition Metadata Object access a Source Metadata Object only through a Master Metadata Object,
this interchange standard ensures that you have to change only a single Master Metadata Object when
you make changes to the essence data.

 In addition, a Master Metadata Object can synchronize essence data in different Source Metadata
Objects. For example, when an application digitizes a videotape, it creates separate Source Metadata
Objects for the video and audio data. By having a single Master Metadata Object with one MobSlot for
each Source Metadata Object, the Composition Metadata Object avoids having to synchronize the audio
and video tracks each time it references essence from different tracks of the videotape.

 The same essence data can exist in more than one digital essence data implementation. Different
implementations represent the same original essence data but can differ in essence format,
compression, or byte order. If there are multiple implementations of digitized essence, the Master
Metadata Object can have a Essence Group object. The Essence Group object has a set of Source Clip
objects, each of which identifies a Source Metadata Object associated with a different implementation of
the essence data. An application can examine these implementations to find the one that it is able to
play or that it can play most efficiently. Essence Groups may be needed if you have systems with
different architectures or compression hardware accessing a single interchange file.

 If, when a essence data file is redigitized, it has to be broken into multiple files, this can be represented
by a Sequence object in the Master Metadata Object that has a series of Source Clip objects, each
identifying the Source Metadata Object associated with one of the files.

 Typically, Master Metadata Objects have a very simple structure. They have an externally visible Mob
Slot for each track of essence and do not have any other slots. Typically, each Mob Slot has a single
Source Clip object that identifies the Source Metadata Object. Master Metadata Objects cannot have
Operation Groups, Nested Scopes, Selectors, Edit Rate Converters, or Transitions.

 The following lists the reasons for having a Mob Slot in a Master Metadata Object have an object other
than a Source Clip:

• If there are multiple implementations of the same essence, the Mob Slot can have a
Essence Group instead of a Source Clip object.

• If the essence source has been broken into several Source Metadata Objects, the Mob
Slot can have a Sequence object. The Sequence object cannot have any component
other than a Source Clip object or a Essence Group object.

• If one of a limited set of correction effects is applied to the essence data

 Figure 4-1 illustrates the containment diagram for a Master Metadata Object describing timeline essence
data, such as audio or video.

58 PRELIMINARY DRAFT AAF Specification Version 1.1

MasterMob

TimelineMobSlot1..*

Segment

SourceClip EssenceGroup SequenceOperationGroup

1..* SourceReference Segment1..*

 Figure 4-1: Master Metadata Object Containment Diagram

 Describing Essence with Source Metadata Objects

 A Source Metadata Object represents a file containing digitized essence or a physical media source,
such as an audio tape, film, or videotape.

 If the essence described by the Source Metadata Object has been derived from a previous generation of
essence, the Mob Slots should have Source Clips that identify the Metadata Object that describes the
previous generation. If the Source Metadata Object describes essence that is not derived from a
previous generation, the Mob Slots should have Source Clips that specify the null Metadata Object.

 Sample Rate and Edit Rate in Timeline Essence

 In many cases the sample rate and edit rate in a file Source Metadata Object will be the same. However,
it is possible to use different edit rates and sample rates in a Source Metadata Object. For example, you
can create a Source Metadata Object for digital audio data, where the edit rate matches the edit rate of
the associated video but the sample rate is much higher. The sample rate is specified in the SampleRate
property in the File Descriptor . When accessing the digital essence data, your application must convert
from the edit rate to the sample rate.

AAF Specification Version 1.1 PRELIMINARY DRAFT 59

 The Source Origin in Timeline Essence

 When an application accesses the digital essence data, it locates the starting position by measuring from
a position known as the source origin. Each file Source Metadata Object indicates this position for each
Timeline Mob Slot in order to provide a reference point for measurements of its essence data.

 For example, when you first digitize the audio from a tape, your application would most likely assign a
value of 0 to the Origin property. In this case the source origin corresponds to the beginning of the data.
Any Source Clip that references this audio will specify a StartTime value that is relative to the start of the
essence.

 However, the location of the origin does not necessarily correspond to the actual beginning of the source.
For example, if a user redigitizes the audio data in the previous example to add more data at the
beginning, the new Essence data object starts at a different point. However, the application will ensure
that existing Source Clips in Composition Metadata Objects remain valid by changing the value of the
Origin property in the Master Metadata Object. By setting the Origin to the current offset of the original
starting point, the application ensures that existing Composition Metadata Objects remain valid.

 Converting Edit Units to Sample Units

 A Timeline Mob Slot uses its own edit rate. So, a Source Clip in a Composition Metadata Object
indicates the starting position in the source and the length of the Segment in edit units. When an
application plays a Composition Metadata Object, it maps the Composition Metadata Object's references
to the source material into references to the corresponding digital essence data.

 To play the digital essence data referenced by a Composition Metadata Object, the application uses the
StartTime and Length values of the Composition Metadata Object's Source Clip, which are specified in
edit units, along with the edit rate to determine the samples to be taken from the essence data. The
application converts EUs to sample durations, adds the file Mob Slot's Origin to the Source Clip's
StartTime, then converts the resulting sample time offset to a sample byte offset. Performing the final
calculation for some essence data formats involves examining the data to find the size in bytes of the
particular samples involved. (All samples need not be the same size.) For example, the JPEG Image
Data object has a frame index.

 An application would not need to reference the original physical Source Metadata Object of the digitized
data unless it is necessary to redigitize or generate a source-relative description, such as an EDL or cut
list.

 In summary:

• Composition Metadata Objects deal entirely in edit units, which are application-defined
time units.

• Digital essence data such as video frames, animation frames, and audio samples are
stored in a stream of bytes, measured in sample units that represent the time duration of
a single sample.

60 PRELIMINARY DRAFT AAF Specification Version 1.1

• Applications access essence data by converting edit units to sample units and then to
byte offsets.

• Master Metadata Objects maintain a reference point in the digitized essence data called
the source origin. Composition Metadata Objects reference positions in the essence data
relative to the origin.

 Describing Essence Format with Essence Descriptors

 Source Metadata Objects describe the details of the essence format with a Essence Descriptor object.
Essence Descriptor is an abstract class that describes the format of the essence data. The essence data
can be digitized essence data stored in a file or it can be essence data on audio tape, film, videotape, or
some other form of essence storage.

 There are two kinds of Essence Descriptors:

• File Descriptors that describe digital essence data stored in Essence data objects or in
noncontainer data files. The Essence File Descriptor class is also an abstract class; its
subclasses describe the various formats of digitized essence. If a Essence Descriptor
object belongs to a subclass of File Descriptor, it describes digital essence data. If a
Essence Descriptor object does not belong to a subclass of File Descriptor, it describes a
physical media source.

• Essence Descriptors that describe a physical media source. This specification defines
the Film Descriptor and Tape Descriptor, but additional private or registered subclasses
of Essence Descriptors can be defined.

 If the digital essence data is stored in an AAF file, the ContainerDefinition property in the File Descriptor
shall reference the ContainerDefinition for the AAF file format.. Digital essence data can be stored in a
noncontainer data file to allow an application that does not support this interchange standard to access it
or to avoid duplicating already existing digital essence data. However, since there is no MobID stored
with raw essence data, it is difficult to identify a raw essence data file if the Locator information is no
longer valid. The format of the digital essence data in the raw file is the same as it would be if it were
stored in an Essence data object.

 The File Descriptor specifies the sample rate and length of the essence data. The sample rate of the
data can be different from the edit rate of the Source Clip object that references it.

 Figure 4-2 illustrates the containment diagram for File Source Metadata Objects and Figure 4-3
illustrates the containment diagram for Physical Source Metadata Objects.

AAF Specification Version 1.1 PRELIMINARY DRAFT 61

SourceMob

TimelineMobSlot1..*

Segment

SourceClip Pulldown

Segment

FileDescriptor

AIFCDescriptor DigitalImageDescriptor TIFFDescriptor WAVEDescriptor

CDCIDescriptor RGBADescriptor

TimecodeSourceClip

 Figure 4-2: File Source Metadata Object Containment Diagram

62 PRELIMINARY DRAFT AAF Specification Version 1.1

SourceMob

TimelineMobSlot1..*

Segment

SourceClip Pulldown

Segment

EssenceDescriptor

FilmDescriptor TapeDescriptor

TimecodeSourceClip

Timecode

Edgecode

Edgecode

 Figure 4-3: Physical Source Metadata Object Containment Diagram

 Describing Image Essence

 The goal of the image format is to simplify the representation of image data and to be able to store the
information required by video formats in common use. It can support compressed and uncompressed
video and can store images in either a color difference component or RGBA component image format. It
provides a rich description of the sampling process used to create the digital essence from an analog
source. This information allows applications to interpret the digital data to represent the original essence.

 This section explains the image essence descriptions that are common to all image essence descriptors
that are subclasses of the Digital Image Descriptor class.

 In order to correctly process or regenerate images, you need access to a complete description of the
layout of the images in the file. This description allows applications to extract the relevant information
from the files, or, if the images have been lost, restore images to their original digital form. At the most

AAF Specification Version 1.1 PRELIMINARY DRAFT 63

generic level, the description of the images is conveyed by a combination of the following properties:
dimensional properties (geometries), sampling properties and colorspace properties.

 These properties specify the following about the image format:

• Properties describing interleaving

• Properties describing geometry

• Properties describing sampling

• Properties describing alpha transparency

• Properties describing compression

 Properties Describing Interleaving

 The major structure of the images is determined by how the images are collated. Images can be
compound or atomic. Atomic images contain the entire frame in one contiguous segment. Examples of
atomic images include computer graphic frames, digitized film frames, progressive-scan video, two-field
interlaced video (even and odd fields mixed together), and single-field video (video where one of the
fields is discarded). Compound images are, at this time, limited to two-field non-interlaced video, in
which the fields are stored separately.

 Since compound video images represent two sub-images, each with the same characteristics, the
properties describe the individual fields, and will apply equally to both fields. This is important for
applications to recognize, since compound video images have a listed height that is half of the entire
frame.

 Some image formats allow some form of selection between interleaved and blocked component order.
Interleaved ordering has the data organized by pixels, with each pixel containing all of the components it
comprises.

 Properties Describing Geometry

 The geometry properties describe the dimensions and meaning of the stored pixels in the image. The
geometry describes the pixels of an uncompressed image. Consequently, the geometry properties are
independent of the compression and subsampling.

 Three separate geometries, stored view, sampled view, and display view, are used to define a set of
different views on uncompressed digital data. All views are constrained to rectangular regions, which
means that storage and sampling have to be rectangular.

 The stored view is the entire data region corresponding to a single uncompressed frame or field of the
image, and is defined by its horizontal and vertical dimension properties. The stored view may include
data that is not derived from and would not usually be translated back to analog data.

64 PRELIMINARY DRAFT AAF Specification Version 1.1

 The sampled view is defined to be the rectangular dimensions in pixels corresponding to the digital data
derived from an analog or digital source. These pixels reside within the rectangle defined by the stored
view. This would include the image and auxiliary information included in the analog or digital source. For
the capture of video signals, the mapping of these views to the original signal is determined by the
VideoLineMap property.

 The display view is the rectangular size in pixels corresponding to the viewable area. These pixels
contain image data suitable for scaling, display, warping, and other image processing. The display view
offsets are relative to the stored view, not to the sampled view.

 Although typically the display view is a subset of the sampled view, it is possible that the viewable area
may not be a subset of the sampled data. It may overlap or even encapsulate the sampled data. For
example, a subset of the input image might be centered in a computer-generated blue screen for use in
a chroma key effect. In this case the viewable pixels on disk would contain more than the sampled
image.

 Each of these data views has a width and height value. Both the sampled view and the display view also
have offsets relative to the top left corner of the stored view.

 Properties Describing Sampling

 The sampling properties describe the parameters used during the analog-to-digital digitization process.
The properties detail the mapping between the signals as well as the format of the source analog signal.
If the essence originated in a digital format, these properties do not apply.

 The VideoLineMap property is necessary for images that are derived from or will be converted to video
(television) signals. For each field, it describes the mapping, relative to the Sampled View in the digital
essence, of the digital image lines to the analog signal lines.

 The VideoLineMap specifies the relationship between the scan lines in the analog signal and the
beginning of the digitized fields. The analog lines are expressed in scan line numbers that are
appropriate for the signal format. For example, a typical PAL two-field mapping might be {20,332}, where
scan line 20 corresponds to the first line of field 1, and scan line 332 corresponds to the first line of field
2. Notice that the numbers are based on the whole frame, not on offset from the top of each field, which
would be {20,20}.

 A value of 0 is allowed only when computer-generated essence has to be treated differently. If the digital
essence was computer generated (RGB), the values can be either {0,1} (even field first) or {1,0} (odd
field first).

 Properties Describing Alpha Transparency

 The AlphaTransparency property determines whether the maximum alpha value or the 0 value indicates
that the pixel is transparent. If the property has a value of 1, then the maximum alpha value is
transparent and a 0 alpha value is opaque. If the property has a value of 0, then the maximum alpha
value is opaque and the 0 alpha value is transparent.

AAF Specification Version 1.1 PRELIMINARY DRAFT 65

 Properties Describing Compression

 The Compression property specifies that the image is compressed and the kind of compression used.
Applications are required to support JPEG and no compression. A value of JPEG specifies that the
image is compressed according to the following:

• Each image frame conforms to ISO DIS 10918-1. If the frame has two fields then each
field is stored as a separate image.

• Images may be preceded or followed by fill bytes.

• Quantization tables are required; they may not be omitted.

• Huffman tables are optional; if omitted, tables from the ISO standard are used.

 JPEG image data are color difference component images that have been compressed using the JPEG
compression algorithm. The JPEG descriptor specifies a general set of quantization tables for restoring
images from the original essence. While tables may vary per image, these tables will represent a starting
point.

 The JPEG Image Data object has a frame index that allows you to access the frames without searching
through the file sequentially. Since the size of the compressed frame is different depending on the image
stored on the frame, the frame index is needed to directly access data for a frame.

 Other values of the compression parameter will be defined for other schemes such as MPEG-2 Video,
and these other schemes will have their own parametric metadata and frame tables, etc.

 RGBA Component Image Descriptors

 An RGBA Component Image object describes essence data that consists of component-based images
where each pixel is made up of a red, a green, and a blue value. Each pixel can be described directly
with a component value or by an index into a pixel palette.

 Properties in the RGBA descriptor allow you to specify the order that the color components are stored in
the image, the number of bits needed to store a pixel, and the bits allocated to each component.

 If a color palette is used, the descriptor allows you to specify the color palette and the structure used to
store each color in the palette.

 Color Difference Component Image Descriptors

 Color Difference Component Image objects specify pixels with one luminance component and two color-
difference components. This format is commonly known as YCbCr.

 It is common to reduce the color information in luma/chroma images to gain a reasonable data reduction
while preserving high quality. This is done through chrominance subsampling. Subsampling removes the

66 PRELIMINARY DRAFT AAF Specification Version 1.1

color information from a fraction of the pixels, leaving the luminance information unmodified. This
removal has the effect of cutting the sampling rate of the chrominance to a fraction of the luminance
sampling rate. The fraction is controlled by the subsampling specification property. The subsampling
factor specifies the number of pixels that will be combined down to one for chrominance components.

 Since the color information is reduced across space, it is useful to be able to specify where in the space
the stored pixel is sited. Understanding the siting is important because misinterpretation will cause colors
to be misaligned.

 For uncompressed images, subsampling is limited to horizontal, since the pixels are interleaved.

 Describing TIFF Image Essence

 A TIFF Image Descriptor object describes the TIFF image data associated with the Source Metadata
Object. The image data is formatted according to the TIFF specification, Revision 6.0, available from
Adobe Corporation. The TIFF object type supports only the subset of the full TIFF 6.0 specification
defined as baseline TIFF in that document.

 Note The TIFF image format has been superseded by the Color Difference Component Image
Descriptor format and the RGBA Component Image Descriptor format in the current version of the
specification. The TIFF format is included in this specification for compatibility.

 The JPEGTableID is an assigned type for preset JPEG tables. The table data must also appear in the
TIFF object along with the sample data, but cooperating applications can save time by storing a
preapproved code in this property that presents a known set of JPEG tables.

 Describing Audio Essence

 An AIFC object contains digitized audio data in the big-endian byte ordering. It contains data formatted
according to the Audio Interchange File Format (AIFF), Apple Computer, Inc., Version 1. The audio data
and the AIFC descriptor data are contained in the AIFC object.

 Note that, although the AIFC standard is designed to support compressed audio data, the AIFC essence
format defined by this standard does not include any compressed audio formats. The only AIFC
compression form supported is NONE and the only AIFC data items that are necessary are the COMM
and SSND data items. All other AIFC data items can be ignored. The descriptive information is
contained directly in the AIFC object. The AIFC SSND data is duplicated in the AIFC Audio Descriptor to
make it more efficient to access this information.

 A WAVE object contains digitized audio data in the little-endian byte ordering. It contains data formatted
according to the Microsoft/IBM Multimedia Programming Interface and Data Specifications, Version 1.0,
but limited to the section describing the RIFF Waveform Audio File Format audio data. The WAVE file
information (without the sample data) is duplicated in the WAVE Audio Descriptor to make it more
efficient to access this information.

 The descriptive information is contained directly in the WAVE object. No additional data properties or
objects are defined for WAVE data, because this format includes all of the metadata needed for
playback.

AAF Specification Version 1.1 PRELIMINARY DRAFT 67

 If a Master Metadata Object or Source Metadata Object has two stereo audio essence tracks, the
PhysicalChannelNumber indicates the physical input channel according to the following convention: 1
indicates the left channel and 2 indicates the right channel.

 Describing Tape and Film

 The Tape Descriptor describes videotape and audio tape media sources. The Film Descriptor describes
film sources. Their properties describe the physical storage format used for the essence. When you
create a tape or film Source Metadata Object, you can include as many of these properties as your
application has access to. Since these properties are optional, they can be omitted when they are
unknown.

 Describing Timecode

 Timecode typically is described in a Source Metadata Object or in a Composition Metadata Object.
Timecode can be described by specifying a starting timecode value or by including a stream of timecode
data.

 A Timecode object in a Source Metadata Object typically appears in a Mob Slot in a Source Metadata
Object that describes a videotape or audio tape. In this context it describes the timecode that exists on
the tape.

 If a tape has a contiguous timecode, the Source Metadata Object can have:

• A Mob Slot for each track of essence on the tape; the Mob Slot should have a single
Source Clip whose Length equals the duration of the tape.

• A Mob Slot for the timecode track that has a Start value equal to the timecode at the
beginning of the tape and whose Length equals the duration of the tape.

 If a tape contains noncontiguous timecodes, then the Mob Slot can have a Sequence of Timecode
objects; each representing a contiguous section of timecode on the tape or can specify the timecode
stream data.

 In some cases the information required to accurately describe the tape's timecode may not be available.
For example, if only a section of a videotape is digitized, the application may not have access to the
timecode at the start of the videotape. In these cases, applications may create a Source Metadata Object
in which the duration of the Source Clip does not necessarily match the duration of the videotape.

 The timecode information for digital essence data and file Source Metadata Objects is contained in the
videotape Source Metadata Object that describes the videotape used to generate the digital essence
data.

 The starting timecode for digital essence data is specified by the Source Clip in the File Source Metadata
Object and by the timecode track in the videotape Source Metadata Object. The Source Clip specifies
the MobID of the videotape Source Metadata Object, the MobSlotID for the Mob Slot describing the

68 PRELIMINARY DRAFT AAF Specification Version 1.1

essence data, and the offset in that track. To find the timecode value, you must find the value specified
for that offset in the timecode Mob Slot of the videotape Source Metadata Object.

 If a videotape has continuous timecode for the entire tape, it is specified by a single Timecode object. If
a videotape has discontinuous timecode, interchange files typically describe it with a single Timecode
object that encompasses all timecode values that are used on the videotape. Discontinuous timecode
can also be described by the following

• A timecode track that has a sequence of Timecode objects, each of which specifies the
starting timecode and the duration of each section of continuous timecode on the
videotape

• A timecode stream that duplicates the timecode data stored on the videotape

 If the timecode track has a single Timecode object, you add the offset to the starting timecode value
specified by the Timecode object.

 If the timecode track has a sequence of Timecode objects, you calculate the timecode by finding the
Timecode object that covers the specified offset in the track and add to its starting timecode the
difference between the specified offset and the starting position of the Timecode object in the track.

 If a Source Metadata Object has more than one timecode Mob Slot, the PhysicalChannelNumber
property indicates the purpose of each as described in Table 4-1.

 Physical Channel Usage

 1 default TC

 2 Sound TC

 3 Aux. TC

 4 AuxTC2

 5 Aux TC3

 6 Aux TC4

 7 Aux TC5

 Table 4-1: Physical Channel Number and Timecode Usage

 Describing Edgecode

 Film edgecode is described in Film Metadata Objects. Edgecode is specified with a Timeline Mob Slot
containing an Edgecode object. The Edgecode object specifies the starting edgecode value, the type of
film, and the text egdecode header. If there is more than one edgecode Mob Slot, the purpose of each is
described by the PhysicalChanneNumber property as described in Table 4-2.

 Physical Channel Usage

 1 Keycode #

 2 Ink Number

 3 Aux. Ink #

AAF Specification Version 1.1 PRELIMINARY DRAFT 69

 Table 4-2: Physical Channel Number and Timecode Usage

 Describing Essence with Pulldown Objects

 Pulldown is a process to convert essence with one frame rate to essence with another frame rate. This
interchange standard describes how essence has been converted with Pulldown objects in File Source
Metadata Objects and videotape Source Metadata Objects.

 What is Pulldown?

 Pulldown is a process to convert between essence at film speed of 24 frames per second (fps) and
essence at a videotape speed of either 29.97 fps or 25 fps. It is important to track this conversion
accurately for two reasons:

• If the final essence format is film and the edits are being done in video, you must be able
to accurately identify a film frame or the cut may be done at the wrong frame in the film.

• You need to be able to maintain the synchronization between picture and audio.

 There are two processes that are used to generate a videotape that matches the pictures on film:

• Telecine after the film has been processed a videotape is generated from the film
negative or workprint.

• Video tap during filming a video camera taps the images being filmed and records a
videotape as the film camera shoots the take. The video camera gets the same image
as the film camera tapping the image by means of either a half-silvered mirror or a
parallel lens.

 The videotape can then be digitized to produce a digital video data that can be edited on a nonlinear
editing system.

 It is also possible to digitize a film image without creating a videotape. The film image can be digitized at
film resolution, video resolution, or both.

 The audio tracks also are transferred from the original recording essence to digital audio data stored on a
nonlinear editing system. The audio tracks can be transferred by the same mechanism as the video
tracks or by a different mechanism.

 Nonlinear editing of material that originated on film can use any of the following workflows:

• Offline film project film to tape to digital to film cut list

• Offline video project film to tape to digital with matchback to videotape EDL and/or film
cut list

• Online video project film to tape to digital, recording a final cut from digital to tape

70 PRELIMINARY DRAFT AAF Specification Version 1.1

 Each of these workflows has a different requirement for synchronizing the digital, tape, and film media
for both audio and video.

 NTSC Three-Two Pulldown

 The relation between film speed (24 fps) and NTSC (29.97) is approximately 4 to 5. A videotape will
have five frames for each four frames of film. Three-Two pulldown accomplishes this by creating three
fields from half of the frames and two fields from the other frames. The A and C frames are transferred
into two fields and the B and D frames are transferred into three fields.

 Since NTSC videotape has a speed of 29.97 fps, in order to get an exact ratio of 4 to 5, the film is played
at 23.976 fps in the telecine machine instead of its natural speed of 24 fps.

 Figure 4-4 illustrates how four film frames are converted to five video frames in Three-Two pulldown by
converting film frames to either two or three video fields.

 Figure 4-4: Telecine Three-Two Pulldown

 During the telecine process, a white flag can be added to the vertical blanking interval of the first field of
video that corresponds to a new film frame.

 A tape Metadata Object describing a tape produced by telecine should have edit rates of 30 fps for its
tracks. Although the videotape is always played at 29.97 fps, the content has a speed of 30 fps.

AAF Specification Version 1.1 PRELIMINARY DRAFT 71

 If the final distribution format is being generating from film, there are advantages to digitizing the
videotape to digital video essence that has a film sample rate. This is done by a reverse telecine process
where only 4 digital fields are created from 5 video frames, which contain 10 video fields.

 Other Forms of Pulldown

 If an NTSC videotape is generated by a video camera running in synchronization with the film camera,
the film camera runs at 24 fps and the video runs at 29.97 fps. Four film frames do not correspond to
exactly five video frames; they correspond to slightly more than five video frames. The video tap uses a
white flag in the vertical blanking area to indicate when a new film frame starts. The first field that starts
after the film frame starts is indicated by a white flag.

 PAL video and 24 fps film can be converted by simply speeding up the film to PAL's 25 fps rate or can
be converted by a pulldown process by converting all 24 frames except the twelfth and twenty-fourth into
two fields of video and converting the twelfth and twenty-fourth film frames into three fields of video.

 Pulldown Objects in Source Metadata Objects

 If NTSC video is digitized to a 24-fps film rate using a reverse Three-Two pulldown, both the File Source
Metadata Object and the Videotape Source Metadata Object have Pulldown objects.

 The Pulldown object in the File Source Metadata Object describes how the videotape was digitized. The
track in the File Source Metadata Object has an edit rate of 24/1 but the Source Clip in the Pulldown
object has an edit rate of 30/1. The Pulldown object specifies the phase of the first frame of the digital
essence data. The phase has a value in the range 0 to 3, where 0 specifies the A frame and 3 specifies
the D frame.

 The Pulldown object in the videotape Source Metadata Object describes how the video was generated
from film. The track in the videotape Source Metadata Object has an edit rate of 30/1 but the Source Clip
in the Pulldown object has an edit rate of 24/1. The phase specifies where the first frame of the section of
videotape is in the 5-frame repeating pattern. The phase has a value in the range 0 to 4, where 0
specifies that the first frame is the AA frame.

 You need to use the phase information to convert an offset in the Metadata Object track containing the
Pulldown object to an offset in the previous generation Metadata Object. To convert a film-rate offset,
you multiply it by 5/4 to get a video rate offset, but if the result is not an integer, you use the phase
information to determine whether you round up or down to get an integer value.

 Typically a videotape is generated from more than one piece of film. In this case, the picture track in the
videotape Source Metadata Object has a Sequence object which has a Pulldown object for each section
of film that has been telecined. If the videotape has discontinuous timecode and the videotape Source
Metadata Object timecode track has a single Timecode object, then the Pulldown objects in the
Sequence are separated by Filler objects that correspond to the skipped timecodes on the videotape.

AAF Specification Version 1.1 PRELIMINARY DRAFT 73

 5. Extending AAF

 Overview of Extending AAF
 The Advanced Authoring Format is designed to allow extensions. AAF files can include extensions that
define new effects, new kinds of metadata, and new kinds of essence data.

 As the technologies of authoring applications advance, people can use the applications to do new things
and will want to interchange this new kind of information between applications. Typically, these new
features are added by one or a few applications, and gradually, as the technology matures, the features
become common to many applications. Consequently, these features are first defined as private
extensions to this standard and may later progress to be included in the dynamic document that
describes this standard.

 Applications may want to store information in extensions for the following reasons:

• To store optional information which can be displayed to the user by other applications. For
example an application can store user-specified comments about essence or compositions.

• To store information for targeted exchange. Two or more applications can be coded to
understand private or registered information.

• To store internal application-specific information so that the application can use this interchange
format as a native file format.

• To define new essence formats for use by plug-in codecs.

 The extra information stored by an application can vary in scale from a single private property to a
complex structure of private objects.

 Extensions may define the following:

74 PRELIMINARY DRAFT AAF Specification Version 1.1

• New effects

• New classes

• New properties

• New property types

• New essence types

• Plug-in code

 New effects and new essence types may require special code to process the effect or essence. This code
can be supplied in a plug-in module. The plug-in mechanism is not defined as part of this standard. This
standard defines the properties required to specify a locator to find a plug-in.

 Extensions are specified in the Header Dictionary property.

 Defining New Effects

 The EffectsDefinition class defines new effects. Effect definitions include the following:

• AUID that identifies the effect

• Effect name and description for display purposes

• Plugin locators

• Number of essence input segments, specifies -1 for effects that can have any number of
input essence segments

• Control code definitions that define the effect's parameters:

• AUID identifying control code

• Data kind of parameter

• Range of allowed values

• Text associated with enumerated values

 When appropriate new Effect Definitions should use existing control codes and data kinds. If an Effect
Definition specifies a previously defined control code, it must specify the same data kind.

 If the data kind definition specifies a range of allowed values, an Effect Definition can limit the range of
allowed values to a lesser range but cannot extend the range.

 Defining New Classes

 To define a new class, you need to generate a AUID for the class and then have your application create
an ClassDefinition object in any interchange file that has the new class. The ClassDefinition object
specifies the following:

• AUID that identifies the class

• Superclass of the class

AAF Specification Version 1.1 PRELIMINARY DRAFT 75

• Class name for display purposes

• Properties that can be included in objects belonging to the class

 Defining New Properties

 You define new properties as part of a Class Definition. If you are defining a new class, you must specify
all the properties that can be used for the class. If you are adding optional properties to a class defined
by this document, you need only to specify the new properties in the class definition. You can omit the
properties defined in this document from the class definition.

 In a class definition, each property definition specifies the following:

• AUID that identifies the property

• Property name for display purposes

• AUID that identifies the property type

• Optionally, range of allowed values or text associated with enumerated values

 If the property has a new property type, the property type definition shall be included in the definition
objects defined in the Header object. If the property has a property type defined in this document, you
can omit the property type definition.

 Defining New Essence Types

 The scope of the task of defining new essence types varies greatly depending on how different the new
essence type is from the existing ones. Defining a new essence type can consist of any of the following

• Defining a new compression method for an existing data kind, such as video

• Defining a new essence type that requires a new data kind for segments

• Defining a new essence type that requires a new kind of Mob Slot and a new set of
classes for Composition Metadata Objects

 This section contains a brief description of how to define a new essence type that uses an existing data
kind. Describing the requirements of defining a new data kind, a new kind of Mob Slot, or new classes for
Composition Metadata Objects is beyond the scope of this document.

 To define a new essence type, you must:

• Define a new subclass of FileDescriptor or a new subclass of EssenceDescriptor for
Source Metadata Objects that are not File Source Metadata Objects

• Define a new subclass of EssenceData or use an existing class

• Create a plug-in essence codec that can import and export the essence data based on
the information in the File Descriptor

76 PRELIMINARY DRAFT AAF Specification Version 1.1

Typically, when defining a new essence format you can use the existing classes for the Mob Slots and
Segments in the Source Metadata Object, but you do have to define a new Essence Descriptor.

If the new essence type consists of a single kind of essence data, such as a single video stream or a
static image, the Source Metadata Object should have a single Mob Slot. If the essence type is a
compound format that has multiple tracks of essence data, the File Source Metadata Object should have
a separate Mob Slot for each separate track of essence data.

Tracking Changes with Generation

If your application stores extended data that is dependent on data stored in AAF’s built-in classes and
properties, your application may need to check if another application has modified the data in the built-in
classes and properties.

The InterchangeObject Generation property allows you to track whether another application has modified
data in an AAF file that may invalidate data that your application has stored in extensions. The
Generation property is a weak reference to the Identification object created when an AAF file is created
or modified. If your application creates extended data that is dependent on data stored in AAF built-in
classes or properties, you can use the Generation property to check if another application has modified
the AAF file since the time that your application set the extended data. To do this, your application stores
the value of the GenerationAUID of the Identification object created when your application set the value
of the extended data.

Consider the following example, an application creates a Sequence containing a Source Clip with
extended properties that contain data that make it more efficient for the application to play the Source
Clip. However, this data is dependent on the section of essence to be played and the position of the
Source Clip in the Sequence. The section of essence to be played is specified by the Source Clip’s
SourceID and SourceMobSlotID properties and the position in the Sequence is specified by the
Sequence Components property.

AAF Specification Version 1.1 PRELIMINARY DRAFT 77

Application A
creates Sequence
with Source Clip

containing
extended data

Application B
modifies AAF file
and may modify

Sequence or
Source Clip

Sequence and
Source Clip
Generation
matches

extended data

Sequence
and Source

Clip
Generation
updated if

modified by
Application B

Application A
compares

Sequence and
Source Clip

Generation with
AUID stored in

extended
properties

Does Sequence
and Source Clip

generation match
stored AUID

Yes

No Recalculate
extended data

78 PRELIMINARY DRAFT AAF Specification Version 1.1

When an object is created or modified, the Generation property is set as a weak reference to the
Identification object created when the AAF file was created or opened for modification. If the Generation
property is not present in an object, that object was created or last modified when the file was first
created.

AAF Specification Version 1.1 PRELIMINARY DRAFT 79

6. AAF Class Model and Class
Hierarchy
This specification defines the AAF class hierarchy, which is used to describe multimedia compositions
and data. A class specifies an AAF object by defining what kind of information it may contain and how it
is to be used. Each AAF class inherits from its superclass. The AAF class hierarchy does not define any
classes that inherit from more than one immediate superclass thereby avoiding the problems associated
with multiple inheritance.

An AAF object consists of a set of properties. A property consists of a property name, a property type,
and a property value.

Each class defines an object that has a set of properties. An object shall contain all the required
properties of all classes from which it inherits. The root of the AAF class hierarchy is the AAFObject
class. The AAFObject class defines one required property, the ObjClass property. An AAF object
specifies its class by the value of the ObjClass property.

The classes defined by this specification may be extended by defining additional optional properties for
existing classes or by defining new classes. If an AAF file contains extensions to the base AAF classes,
these extensions will be defined in the file’s AAFHeader object’s ClassDictionary and Definitions
properties. An AAF file will have one and only one Header object.

This specification describes classes, property names, and property types by name, but classes, property
names, and property types are uniquely defined in an AAF file by an AUID. The AAF reference
implementation defines the specific AUID values that define the AAF classes, property names, and
property types.

AAF objects are stored in an AAF file using a structured container format. The AAF reference
implementation uses Microsoft’s Structured Storage as its container format, and implements an object
management layer to specifics such as extended property set management.

80 PRELIMINARY DRAFT AAF Specification Version 1.1

Object model goals
Applications that process essence and metadata exist on a multitude of platforms, each with different
characteristics for storage capacity, throughput, multimedia hardware, and overall system architecture.
This document defines a format for the interchange of essence and metadata across applications and
across platforms.

This document provides a mechanism to encapsulate essence and metadata. It defines objects to store
and describe the essence that allow an application to determine the format of the essence and to
determine what conversions, if any, it needs to apply to the essence to process the essence.

This document provides a mechanism to synchronize essence and to describe the format of essence that
contains interleaved streams. This mechanism allows an application to synchronize separate streams of
essence that were originally derived from original media sources, such as film audio tape, and videotape,
that were created in synchronization.

This document provides a mechanism to describe the derivation of essence from the original media
sources. This mechanism allows applications to reference tape timecode and film edgecode that
correspond to the essence and allows applications to regenerate essence from the original media
sources.

This document provides a mechanism to describe compositions. Compositions contain information about
how sections of essence should be combined in sequence, how to synchronize parallel tracks of
sequences, and how to alter sections of essence or combine sections of essence by performing effects.

This document provides a mechanism to define new classes or to add optional information to existing
classes. This mechanism allows applications to store additional information in an interchange file without
restricting the interchange of the information specified by this document.

Classes and semantic rules
This document defines classes that specify the kinds of objects that can be included in a storage wrapper
file and it defines the semantic rules for including objects in a storage wrapper file.

An object consists of a set of properties. Each property has a property name, a property type, and a
property value. Each object belongs to a class that specifies the properties that it is required to have and
optional properties that it may have.

This document defines classes by defining a class hierarchy and by defining the properties for each class
in the hierarchy. This document also defines a mechanism for extending the class hierarchy by defining
new classes that are subclasses of classes defined in this document.

The root class in the class hierarchy is the InterchangeObject class.

An object shall have the required properties specified for all classes that it is a member of. An object
may have the optional properties specified for all classes that it is a member of. Annex A lists the classes
in the class hierarchy and specifies the properties that are required and the properties that are optional

AAF Specification Version 1.1 PRELIMINARY DRAFT 81

for each class. Annex A also lists semantic rules, restrictions, and requirements on objects based on the
object’s class and the context in which the object is used.

The class of an object is specified by the ClassID property of the InterchangeObject class.

Class Hierarchy
Figures 6-1 through 6-11 illustrates the class hierarchy.

82 PRELIMINARY DRAFT AAF Specification Version 1.1xx

InterchangeObject

TaggedValue

Header

Identification

Component

ContentStorage

DefinitionObject

Locator

EssenceDescriptor

EssenceData

Mob

MobSlot

Parameter

Dictionary

ControlPoint

PluginDescriptor

AAF Specification Version 1.1 PRELIMINARY DRAFT 83

Figure 6-1 Class Hierarchy: InterchangeObject

Segment

Transition

Edgecode

OperationGroup

Filler

EssenceGroup

NestedScope

Pulldown

ScopeReference

Selector

Sequence

SourceReference

Timecode

TimecodeStream TimecodeStream12M

Component

Event

84 PRELIMINARY DRAFT AAF Specification Version 1.1

Figure 6-2 Class Hierarchy: Component

MasterMob

CompositionMob

SourceMob

Mob

Figure 6-3 Class Hierarchy: Mob

TimelineMobSlot

StaticMobSlot

EventMobSlot

MobSlot

Figure 6-4 Class Hierarchy: MobSlot

AAF Specification Version 1.1 PRELIMINARY DRAFT 85

TextClip HTMLClip

SourceClip

SourceReference

Figure 6-5 Class Hierarchy: SourceReference

Event GPITrigger

IntraFrameMarker

CommentMarker

Figure 6-6 Class Hierarchy: Event

86 PRELIMINARY DRAFT AAF Specification Version 1.1

AIFCDescriptor

DigitalImageDescriptor

TIFFDescriptor

WAVEDescriptor

CDCIDescriptor

RGBADescriptor

FileDescriptor

TapeDescriptor

FilmDescriptor

EssenceDescriptor

MIDIFileDescriptor

HTMLDescriptor

Figure 6-7 Class Hierarchy: EssenceDescriptor

AAF Specification Version 1.1 PRELIMINARY DRAFT 87

Locator

NetworkLocator

TextLocator

Figure 6-8 Class Hierarchy: Locator

88 PRELIMINARY DRAFT AAF Specification Version 1.1

DefinitionObject ClassDefinition

ParameterDefinition

DataDefinition

OperationDefinition

PropertyDefinition

TypeDefinition

CodecDefinition

InterpolationDefinition

ContainerDefinition

TypeDefinitionInteger

TypeDefinitionFixedArray

TypeDefinitionEnumeration

TypeDefinitionRecord

TypeDefinitionRename

TypeDefinitionSet

TypeDefinitionStream

TypeDefinitionString

TypeDefinitionStrongObjectReference

TypeDefinitionVariableArray

TypeDefinitionWeakObjectReference

TypeDefinitionExtendibleEnumeration

Figure 6-10 Class Hierarchy: DefinitionObject

AAF Specification Version 1.1 PRELIMINARY DRAFT 89

VaryingValue

ConstantValue

Parameter

Figure 6-11 Class Hierarchy: Parameter

Appendix A identifies the classes in the class hierarchy that are abstract classes. An object that belongs
to an abstract class shall also belong to a subclass of the abstract class.

An object can be used in any context where an object of its class or of one of its superclasses is allowed
subject to the restrictions listed in Appendix A.

90 PRELIMINARY DRAFT AAF Specification Version 1.1

AAF Specification Version 1.1 PRELIMINARY DRAFT 91

Appendix A: AAF Object Classes
This document contains the reference descriptions of the AAF classes. The reference pages are
arranged alphabetically.

AIFCDescriptor Class
The AIFCDescriptor class specifies that a File Source mob is associated with audio content data
formatted according to the Audio Interchange File Format with Compression (AIFC).

The AIFCDescriptor class is a subclass of the FileDescriptor class.

 The AIFC audio format is a recommended audio format, but the AIFC format is not required for
compliance with this document.

An AIFCDescriptor object shall be owned by a File Source mob.

92 PRELIMINARY DRAFT AAF Specification Version 1.1

AIFCDescriptor

+Summary : DataValue

FileDescriptor

An AIFCDescriptor object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Summary PrefT:DataValue A copy of the descriptive information in the

associated AIFC Audio Data value. Required.

CDCIDescriptor Class
The CDCIDescriptor class specifies that a File Source mob is associated with video essence formatted
with one luminance component and two color-difference component as specified in this document.

The CDCIDescriptor class is a subclass of the DigitalImageDescriptor class.

A CDCIDescriptor object shall be the EssenceDescription in a File Source mob.

AAF Specification Version 1.1 PRELIMINARY DRAFT 93

CDCIDescriptor

+ComponentWidth : UInt32
+HorizontalSubsampling : UInt32
+VerticalSubsampling : UInt32
-AlphaSamplingWidth : UInt32
+ColorSiting : ColorSitingType
+BlackReferenceLevel : UInt32
+WhiteReferenceLevel : UInt32
+ColorRange : UInt32
+PaddingBits : Int16

FileDescriptor

A CDCIDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:ComponentWidth PrefT:UInt32 Specifies the number of bits

used to store each component.
Can have a value of 8, 10, or
16. Each component in a
sample is packed contiguously;
the sample is filled with the
number of bits specified by the
optional PaddingBits property. If
the PaddingBits property is
omitted, samples are packed
contiguously. Required.

Pref:HorizontalSubsampling PrefT:UInt32 Specifies the ratio of luminance
sampling to chrominance
sampling in the horizontal
direction. For 4:2:2 video, the
value is 2, which means that
there are twice as many
luminance values as there are
color-difference values. The
other legal value is 1. Required.

94 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:VerticalSubsampling PrefT:UInt32 Specifies the ratio of luminance

sampling to chrominance
sampling in the vertical
direction. Optional; default value
is 1.

Pref:AlphaSamplingWidth PrefT:UInt32 Specifies the number of bits
used to store the Alpha
component. Optional; default
value is 0.

Pref:ColorSiting PrefT:ColorSitingType
Specifies how to compute subsampled chrominance
component values. Values are:

0 coSiting To calculate subsampled pixels, take the
preceding pixel’s color value, discard the
other color values, and cosite the color
with the first luminance value.

1 averaging To calculate subsampled pixels, take the
average of the two adjacent pixels’ color
values, and site the color in the center of
the luminance pixels.

2 threeTap To calculate subsampled pixels, take 25
percent of the previous pixel’s color
value, 50 percent of the first value, and
25 percent of the second value. For the
first value in a row, use 75 percent of
that value since there is no previous
value. The threeTap value is only
meaningful when the
HorizontalSubsampling property has a
value of 2.

Optional; when omitted, treat as coSiting.

Pref:BlackReferenceLevel PrefT:UInt32 Specifies the digital luminance
component value associated
with black. For CCIR-601/2, the
value is 16; for YUV, the value
is 0. The same value is used in
CDCI and RGBA when the
standard CCIR colorspace
conversion is used. Optional; if
omitted the default value is 0.

AAF Specification Version 1.1 PRELIMINARY DRAFT 95

Property Name Type Explanation
Pref:WhiteReferenceLevel PrefT:UInt32 Specifies the digital luminance

component value associated
with white. For CCIR-601/2, 8-bit
video, the value is 235; for YUV
8-bit video, the value is 255.
Optional; if omitted, the default
value is maximum unsigned
integer value for component
size.

Pref:ColorRange PrefT:UInt32 Specifies the range of allowable
digital chrominance component
values. Chrominance values are
signed and the range specified
is centered on 0. For CCIR-
601/2, the value is 225; for YUV
the value is 255. This value is
used for both chrominance
components. Optional; the
default value is the maximum
unsigned integer value for the
component size.

Pref:PaddingBits PrefT:Int16 Specifies the number of bits
padded to each pixel. Optional;
default is 0.

Note 1 This format is commonly known as YCbCr.

Note 2 Chrominance subsampling reduces storage requirements by omitting the color
difference information for some pixels. When reading the image, the color difference
information for these pixels is calculated from the color difference information of the
adjacent pixels. Color siting specifies how to calculate the color difference information
when the two pixels have unequal color difference information.

ClassDefinition Class
The ClassDefinition class extends the class hierarchy defined in this document by specifying a new class
or by defining additional optional properties for a class defined in this document.

The ClassDefinition class is a subclass of the DefinitionObject class.

96 PRELIMINARY DRAFT AAF Specification Version 1.1

PropertyDefinition0..*

ParentClass

DefinitionObject

ClassDefinition

+ParentClass : WeakReference
+Properties : StrongReferenceSet
+IsAbstract : Boolean

ClassDefinition

All ClassDefinition objects are owned by the Dictionary object. A ClassDefinition object shall have the
required classes listed in the following table.

Property Name Type Explanation
Pref:ParentClass PrefT:WeakReference

to ClassDefinition
Specifies the parent of the class being defined.
Required.

Pref:Properties PrefT:
StrongReferenceSet of
PropertyDefinition

Specifies an unordered set of PropertyDefinition
objects that define the properties for a new class or
additional optional properties for an existing class.
Optional.

Pref:IsAbstract PrefT:Boolean Specifies if the class is abstract. If the class is
abstract, then any object in an AAF file that belongs
to an abstract class shall also belong to a
nonabstract subclass of the abstract class. Optional;
default value is False.

1. Any class extension must be descended from the InterchangeObject class. A Class Definition
object specifying the InterchangeObject class shall have a ParentClass property with a 0 value.

AAF Specification Version 1.1 PRELIMINARY DRAFT 97

CodecDefinition Class
The CodecDefinition class specifies the kind of data that can be stored in a Component.

The CodecDefinition class is a subclass of the DefinitionObject class.

All CodecDefinition objects are owned by a Dictionary object.

DefinitionObject

CodecDefinition

+FileDescriptorClass : WeakReference
+DataDefinitions : WeakReferenceSet

ClassDefinition

DataDefinition

FileDescriptorClass

1..*

DataDefinitions

All CodecDefinition objects are owned by a Dictionary object. A CodecDefinition object shall have the
required classes listed in the following table

Property Name Type Explanation
Pref:
FileDescriptorClass

PrefT:
WeakReference to
ClassDefinition

Specifies the subclass of FileDescriptor that
identifies the essence format that this codec
processes. Required.

Pref:DataDefinition PrefT:
WeakReferenceSet
of DataDefinition

Specifies the DataDefinitions of the essence
formats that this codec processes. Required.

98 PRELIMINARY DRAFT AAF Specification Version 1.1

CommentMarker Class
The CommentMarker class specifies a user comment that is associated with a point in time.

CommentMarker is a subclass of Event. A CommentMarker object may have a SourceReference that
specifies a text or audio annotation.

Event

CommentMarker

+Annotation : StrongReference
SourceReference

A CommentMarker object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Annotation PrefT:StrongReference

to SourceReference
Specifies text or audio annotation. Optional.

Component Class
The Component class represents a essence element.

The Component class is a subclass of InterchangeObject.

The Component class is an abstract class; consequently an object that belongs to the Component class
shall also belong to a subclass of the Component class.

AAF Specification Version 1.1 PRELIMINARY DRAFT 99

InterchangeObject

Component

+DataDefinition : WeakReference
+Length : Length

DataDefinition

A Component object shall have the required properties and may have the optional properties listed in the
following table. A Component object shall have or shall not have the Length property according to the
rule in the list entry 1 following the table

Property Name Type Explanation
Pref:DataDefinition PrefT:WeakReference

to DataDefinition
Specifies the DataDefinition object that
specifies the kind of data described by the
component. Required.

Pref:Length PrefT:Length Specifies the duration in edit units of the
component. Optional; see rule 1.

1. If a Component is in a TimelineMobSlot, then it shall have a Length property. If a Component is in a
StaticMobSlot, then it shall not have a Length property. If a Component is in an EventMobSlot, then it
may have a Length property. If a Component in an EventMobSlot does not have a Length property, then
the Component describes an instantaneous event that does not have a duration.

CompositionMob Class
The CompositionMob class specifies how to combine content data elements into a sequence, how to
modify content data elements, and how to synchronize content data elements.

The CompositionMob class is a subclass of the Mob class.

100 PRELIMINARY DRAFT AAF Specification Version 1.1

Mob

CompositionMob

+DefaultFadeLength : Length
+DefaultFadeType : FadeType
+DefaultFadeEditUnit : Rational

A CompositionMob object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:DefaultFadeLength PrefT:Length Specifies the default length of the audio fade-in

and fade-out to be applied to all audio
SourceClips that do not specify the audio fade
properties. Optional; if specified, then the default
fade type and the default fade edit units must
also be specified.

Pref:DefaultFadeType PrefT:FadeType Specifies the default type of audio fade. Optional;
if specified, then the default length and default
edit units must also be specified. Specifies the
type of the audio fade in; may have one of the
following values:

0 No fade

1 Linear amplitude fade

2 Linear power fade

3 Linear dB fade

Additional registered and private fade in types
may be defined. Optional.

Pref:DefaultFadeEditUnit PrefT:Rational Specifies the edit units in which the default fade
length is specified. Optional; if specified, then the
default fade length and default fade type must
also be specified.

1. A CompositionMob object shall have one or more MobSlots

2. A ContentStorage may have any number of composition mobs.

AAF Specification Version 1.1 PRELIMINARY DRAFT 101

ConstantValue Class
Specifies a constant data value and a duration and is used to specify an effect control value.

The ConstantValue class is a subclass of the Parameter class.

ConstantValue

+Value : DataValue

Parameter

A ConstantValue object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Value PrefT:DataValue Specifies the value. Required.

ContainerDefinition Class
The ContainerDefinition class specifies the mechanism used to store essence data. A container can be
either a kind of file, such as an AAF file or it can be another mechanism for storing essence data.

The ContainerDefinition class is a subclass of the DefinitionObject class.

All ContainerDefinition objects shall be owned by the Dictionary object.

102 PRELIMINARY DRAFT AAF Specification Version 1.1

DefinitionObject

ContainerDefinition

+EssenceIsIdentified : Boolean

All ContainerDefinition objects shall be owned by the Dictionary object. A ContainerDefinition object may
have the optional classes listed in the following table

Property Name Type Explanation
Pref:
EssenceIsIdentified

PrefT:Boolean Specifies that the container uses the MobID to identify
the essence data and that the container may contain
multiple essence data objects, each identified by a
MobID. Required.

ContentStorage Class
The ContentStorage class has the Mobs and EssenceData objects in a file. A AAF file shall have one
and only one ContentStorage object.

The ContentStorage class is a subclass of the InterchangeObject class.

AAF Specification Version 1.1 PRELIMINARY DRAFT 103

ContentStorage

+Mobs : StrongReferenceSet
+EssenceData : StrongReferenceSet

InterchangeObject

Mob

EssenceData

0..*

Mobs

0..*

EssenceData

A ContentStorage object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Mobs PrefT:

StrongReferenceSet of
Mob

Has a set of all Mobs in the file. Required.

Pref:EssenceData PrefT:
StrongReferenceSet of
EssenceData

Has a set of all EssenceData objects in the file.
Optional.

ControlPoint Class
The ControlPoint class specifies a value and a time point and is used to specify an effect control value.

104 PRELIMINARY DRAFT AAF Specification Version 1.1

The ControlPoint class is a subclass of InterchangeObject.

A ControlPoint shall be one of the set of ControlPoint objects in the VaryingValue PointList property.

InterchangeObject

ControlPoint

+Type : WeakReference
+Value : DataValue
+Time : Rational
+EditHint : EditHintType TypeDefinition

A ControlPoint object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Type PrefT:WeakReference

to TypeDefinition
Specifies the data type of the DataValue. Required.

Pref:Time PrefT:Rational Specifies the time within the Varying Value segment
for which the value is defined. Required.

Pref:Value PrefT:DataValue Specifies the value. Required.

Pref:EditHint PrefT:EditHintType Specifies a hint to be used if the Effect starting time
or length is changed during editing. Can be
EH_Proportional, EH_RelativeLeft, or
EH_RelativeRight. Optional.

1. A Control Point object specifies the value at a specific time in a Varying Value object. The
Control Point object must have the same type as the Varying Value object owning it.

2. A Time equal to 0.0 represents the time at the beginning the Varying Value Object; a Time equal
to 1.0 represents the time at the end of the Varying Value object

DataDefinition Class
The DataDefinition class specifies the kind of data that can be stored in a Component.

AAF Specification Version 1.1 PRELIMINARY DRAFT 105

The DataDefinition class is a subclass of the DefinitionObject class.

All DataDefinition objects shall be owned by a Dictionary object.

DefinitionObject

DataDefinition

The DataDefinition class does not define any additional properties.

 Note 1 A Data Definition object identifies the kind of the data produced by a
Component object.

DefinitionObject Class
The DefinitionObject is an abstract class that defines an item to be referenced.

The DefinitionObject class is a subclass of the InterchangeObject class.

The DefinitionObject class is an abstract class; consequently an object that belongs to the
DefinitionObject class shall also belong to a subclass of the DefinitionObject class.

106 PRELIMINARY DRAFT AAF Specification Version 1.1

DefinitionObject

+Identification : AUID
+Name : String
+Description : String
+PluginDescriptors : WeakReferenceVector

InterchangeObject

PluginDescriptor
0..*

{ordered}

A DefinitionObject object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Identification PrefT:AUID Specifies the unique identifier for the item

being defined. Required.

Pref:Name PrefT:String Specifies the display name of the item being
defined. Required.

Pref:Description PrefT:String Provides an explanation of the use of the item
being defined. Optional.

Pref:
PluginDescriptors

PrefT:
WeakReferenceVector of
PluginDescriptor

Identifies plugin code that supports the
definition object. Optional.

Dictionary Class
The Dictionary class has Definition objects.

AAF Specification Version 1.1 PRELIMINARY DRAFT 107

The Dictionary class is a subclass of the InterchangeObject class.

108 PRELIMINARY DRAFT AAF Specification Version 1.1

Dictionary

+ClassDefinitions : StrongReferenceSet
+CodecDefinitions : StrongReferenceSet
+ContainerDefinitions : StrongReferenceSet
+DataDefinitions : StrongReferenceSet
+OperationDefinitions : StrongReferenceSet
+InterpolationDefinitions : StrongReferenceSet
+ParameterDefinitions : StrongReferenceSet
+TypeDefinitions : StrongReferenceSet
+PluginDescriptors : StrongReferenceSet

InterchangeObject

ClassDefinition

ParameterDefinition

DataDefinition

OperationDefinition

TypeDefinition

0..*

0..*

CodecDefinition

ContainerDefinition

InterpolationDefinition

PluginDescriptor

0..*

0..*

0..*

0..*

0..*

0..*

0..*

A Dictionary object shall have the required properties and may have the optional properties listed in the
following table.

AAF Specification Version 1.1 PRELIMINARY DRAFT 109

Property Name Type Explanation
Pref:ClassDefinitions PrefT:

StrongReferenceSet of
ClassDefinition

Specifies the ClassDefinitions that are
used in the file. Optional.

Pref:CodecDefinitions PrefT:
StrongReferenceSet of
CodecDefinition

Specifies CodecDefinitions that
describe code that can compress or
uncompress samples of EssenceData
or that can convert samples to another
format.

Pref:
ContainerDefinitions

PrefT:
StrongReferenceSet or
ContainerDefinition

Specifies ContainerDefinitions that
describe container mechanisms used to
store EssenceData. Optional.

Pref:DataDefinitions PrefT:
StrongReferenceSet of
DataDefintion

Specifies the DataDefinitions that are
used in the file. Optional.

Pref:OperationDefinitions PrefT:
StrongReferenceSet of
OperationDefinition

Specifies the OperationDefinitions that
are used in the file. Optional.

Pref:
InterpolationDefinitions

PrefT:
StrongReferenceSet of
InterpolationDefinition

Specifies InterpolationDefinitions that
can calculate values in a VaryingValue
based on the values specified by the
ControlPoints. Optional.

Pref:ParameterDefinitions PrefT:
StrongReferenceSet of
ParameterDefinition

Specifies the ParameterDefinitions that
are used in the file. Optional.

Pref:TypeDefinitions PrefT:
StrongReferenceSet of
TypeDefinition

Specifies the Types that are used in the
file. Optional.

Pref:PluginDescriptors PrefT:
StrongReferenceSet of
PluginDescriptor

Identifies code objects that provide an
implementation for a DefinitionObject,
such as a CodecDefinition or an
InterpolationDefinition. Optional.

DigitalImageDescriptor Class
The DigitalImageDescriptor class specifies that a File Source mob is associated with video content data
that is formatted either using RGBA or luminance/chrominance formatting.

The DigitalImageDescriptor class is a subclass of the FileDescriptor class.

110 PRELIMINARY DRAFT AAF Specification Version 1.1

The DigitalImageDescriptor class is an abstract class; consequently an object that belongs to the
DigitalImageDescriptor class shall also belong to a subclass of DigitalImageDescriptor.

FileDescriptor

DigitalImageDescriptor

+Compression : AUID
+StoredWidth : UInt32
+StoredHeight : UInt32
+SampledWidth : UInt32
+SampledHeight : UInt32
+SampledXOffset : Int32
+SampledYOffset : Int32
+DisplayWidth : UInt32
+DisplayHeight : UInt32
+DisplayXOffset : Int32
+DisplayYOffset : Int32
+FrameLayout : LayoutType
+VideoLineMap : Int32Array
+ImageAspectRatio : Rational
+AlphaTransparency : Int32
+Gamma : Rational
+ImageAlignmentFactor : Int32
+ClientFillStart : UInt32
+ClientFillEnd : UInt32

A DigitalImageDescriptor object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:Compression PrefT:AUID Kind of compression and format of

compression information. Optional;
if there is no compression, the
property is omitted.

Pref:StoredWidth PrefT:UInt32 Number of pixels in horizontal
dimension of stored view. Required.

Pref:StoredHeight PrefT:UInt32 Number of pixels in vertical
dimension of stored view. Required.

AAF Specification Version 1.1 PRELIMINARY DRAFT 111

Property Name Type Explanation
Pref:SampledWidth PrefT:UInt32 Number of pixels in horizontal

dimension of sampled view.
Optional; the default value is
StoredWidth.

Pref:SampledHeight PrefT:UInt32 Number of pixels in vertical
dimension of sampled view.
Optional; the default value is
StoredHeight.

Pref:SampledXOffset PrefT:Int32 X offset, in pixels, from top-left
corner of stored view. Optional;
default value is 0.

Pref:SampledYOffset PrefT:Int32 Y offset, in pixels from top-left
corner of stored view. Optional;
default value is 0.

Pref:DisplayWidth PrefT:UInt32 Number of pixels in vertical
dimension of display view. Optional;
the default value is StoredWidth.

Pref:DisplayHeight PrefT:UInt32 Number of pixels in vertical
dimension of display view. Optional;
the default value is StoredHeight.
See the Description section for an
explanation of image geometry.

Pref:DisplayXOffset PrefT:Int32 X offset, in pixels, from top-left
corner of stored view. Optional; the
default value is 0.

Pref:DisplayYOffset PrefT:Int32 Y offset, in pixels, from top-left
corner of stored view. Optional; the
default value is 0.

112 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:FrameLayout PrefT:LayoutType Describes whether all data for a

complete sample is in one frame or
is split into more than one field.
Values are

0 FULL_FRAME: frame
consists of a full sample in
progressive scan lines.

1 SEPARATE_FIELDS: sample
consists of two fields, which
when interlaced produce a full
sample.

2 SINGLE_FIELD: sample
consists of two interlaced
fields, but only one field is
stored in the data stream.

3 MIXED_FIELDS: frame
consists of a full sample but
the video was acquired with
interlaced fields.

Required.
Pref:VideoLineMap PrefT:Int32Array Specifies the scan line in the analog

source that corresponds to the
beginning of each digitized field. For
single-field video, there is 1 value in
the array; for interleaved video,
there are 2 values in the array.

Pref:ImageAspectRatio PrefT:Rational Describes the ratio between the
horizontal size and the vertical size
in the intended final image.
Required.

Pref:AlphaTransparency PrefT:Int32 A value of 1 means that the
maximum Alpha value is
transparent. A value of 0 means that
the 0 Alpha value is transparent.
Optional.

Pref:Gamma PrefT:Rational Specifies the expected output
gamma setting on the video display
device. Optional.

Pref:ImageAlignmentFactor PrefT:Int32 Specifies the alignment when storing
the digital essence. For example, a
value of 16 means that the image is
stored on 16-byte boundaries. The
starting point for a field will always
be a multiple of 16 bytes. If the field
does not end on a 16-byte boundary,
the remaining bytes are unused.
Optional; default value is 0.

AAF Specification Version 1.1 PRELIMINARY DRAFT 113

Property Name Type Explanation
Pref:ClientFillStart PrefT:UInt32 Specifies the number of fill bytes

that precede the data for each field
in a frame. Optional; default value is
0.

Pref:ClientFillEnd PrefT:UInt32 Specifies the number of bytes that
follow the data for each field in a
frame. Optional; default value is 0.

1. If a DigitalImageDescriptor has any of the sampled geometry properties, SampledHeight,
SampledWidth, SampledXOffset, and SampledYOffset, it shall have all of them.

2. If a DigitalImageDescriptor has any of the display geometry properties, DisplayHeight,
DisplayWidth, DisplayXOffset, and DisplayYOffset, it shall have all of them.

3. The Compression property specifies that the image is compressed and the kind of compression
used.

4. The geometry properties describe the dimensions and meaning of the stored pixels in the image.
The geometry describes the pixels of an uncompressed image. Consequently, the geometry
properties are independent of the compression and subsampling.

Three separate geometry’s— stored view, sampled view, and display view— are used to define a
set of different views on uncompressed digital data. All views are constrained to rectangular
regions, which means that storage and sampling has to be rectangular.

The relationships among the views are described in Figure A-1.

114 PRELIMINARY DRAFT AAF Specification Version 1.1

Figure A-1 – Stored, Sampled, and Displayed View

The stored view is the entire data region corresponding to a single uncompressed frame or field
of the image, and is defined by its horizontal and vertical dimension properties. The stored view
may include data that is not derived from, and would not usually be translated back to, analog
data.

The sampled view is defined to be the rectangular dimensions in pixels corresponding to the
digital data derived from an analog or digital source. These pixels reside within the rectangle
defined by the stored view. This would include the image and auxiliary information included in
the analog or digital source. For the capture of video signals, the mapping of these views to the
original signal is determined by the VideoLineMap property.

The display view is the rectangular size in pixels corresponding to the viewable area. These
pixels contain image data suitable for scaling, display, warping, and other image processing. The
display view offsets are relative to the stored view, not to the sampled view.

Although typically the display view is a subset of the sampled view, it is possible that the
viewable area may not be a subset of the sampled data. It may overlap or even encapsulate the
sampled data. For example, a subset of the input image might be centered in a computer-
generated blue screen for use in a chroma key effect. In this case the viewable pixels on disk
would contain more than the sampled image.

Each of these data views will have a width and height value. Both the sampled view and the
display view also have offsets relative to the top left corner of the stored view.

5. The FrameLayout property describes whether a complete image is contained in one full field or
in two separate fields.

AAF Specification Version 1.1 PRELIMINARY DRAFT 115

6. The ImageAspectRatio describes the ratio between the horizontal size and the vertical size in the
intended final image.

7. The VideoLineMap specifies the relationship between the scan lines in the analog signal and the
beginning of the digitized fields. The analog lines are expressed in scan line numbers that are
appropriate for the signal format. For example, a typical PAL two-field mapping might be
{20,332}, where scan line 20 corresponds to the first line of field 1, and scan line 332
corresponds to the first line of field 2. Notice that the numbers are based on the whole frame, not
on offsets from the top of each field, which would be {20,20}

A value of 0 is allowed only when computer-generated essence has to be treated differently. If
the digital essence was computer generated (RGB), the values may be either {0,1} (even field
first) or {1,0} (odd field first).

8. The AlphaTransparency property determines whether the maximum alpha value or the 0 value
indicates that the pixel is transparent. If the property has a value of 1, then the maximum alpha
value is transparent and a 0 alpha value is opaque. If the property has a value of 0, then the
maximum alpha value is opaque and the 0 alpha value is transparent.

Edgecode Class
The Edgecode class stores film edge code information.

The Edgecode class is a subclass of the Segment class.

Edgecode

+Start : Position
+FilmKind : FilmType
+CodeFormat : EdgeType
+Header : DataValue

Segment

An Edgecode object shall have the required properties listed in the following table.

116 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:Start PrefT:Position Specifies the edge code at the beginning of the

segment. Required.

Pref:FilmKind PrefT:FilmType Specifies the type of film; one of these:

0 FT_NULL
1 FT_35MM
2 FT_16MM
3 FT_8MM
4 FT_65MM

Required.

Pref:CodeFormat PrefT:EdgeType Specifies the edge code format; one of these:

0 ET_NULL
1 ET_KEYCODE
2 ET_EDGENUM4
3 ET_EDGENUM5
Required.

Pref:Header PrefT:DataValue Specifies the text prefix that identifies the film.
Typically, this is a text string of no more than 8
characters. Optional.

EssenceData Class
The EssenceData class contains essence.

The EssenceData class is a subclass of the InterchangeObject class.

The EssenceData class is an abstract class; consequently an object that belongs to the EssenceData
class shall also belong to a subclass of EssenceData.

AAF Specification Version 1.1 PRELIMINARY DRAFT 117

InterchangeObject

EssenceData

+MobID : WeakReference
+Data : DataStream
+SampleIndex : DataStream

SourceMob

A EssenceData object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:MobID :PrefT:WeakReference

to Mob
Identifies the source mob that describes the
essence. Required.

Pref:Data Pref:DataStream Contains the essence data. Required.
Pref:SampleIndex Pref:DataStream Contains an index to the samples or frames. The

format of the index is determined by the Codec.
Optional.

EssenceDescriptor Class
The EssenceDescriptor class describes the format of the content data associated with a File Source mob
or of the media associated with a Physical Source mob.

The EssenceDescriptor class is a subclass of the InterchangeObject class.

The EssenceDescriptor class is an abstract class; an object that belongs to the EssenceDescriptor class
shall belong to a subclass of EssenceDescriptor.

118 PRELIMINARY DRAFT AAF Specification Version 1.1

InterchangeObject

EssenceDescriptor

+Locator : StrongReferenceVector

Locator0..*

A EssenceDescriptor object may have the optional properties described in the following table.

Property Name Type Explanation
Pref:Locator PrefT:

StrongReferenceVector
of Locator

Has an array of Locator objects that provide
operating-system-dependent data or text information
that provide hints for finding files or physical media.
Optional.

Locator objects provide information either for finding files or for finding physical media according to the
following rules.

1) If the object owning the locators belongs to the FileDescriptor class as well as the
EssenceDescriptor class, then the locators are owned by a file source mob and provide
information for finding files. A file source mob can have any number of locators and the locators
may belong to any subclass of Locator.

2) If the object owning the locators belongs to the EssenceDescriptor class but not to the
FileDescriptor class, then the locators are owned by a physical source mob and provide
information for finding physical media. A physical source mob can have any number of locators;
the locators shall belong to the TextLocator subclass of Locator.

Note 1 Locators in a file source mobs provide hints to help find files associated
with the file source mob, but they are only hints because their correctness cannot be
guaranteed, since users may rename or delete files. Typically, this can happen if the
AAF file is renamed after being created. If your application cannot find a file by using the
hint, it can search through all accessible AAF files to find the EssenceData object with
the MobID value.

Note 2 A essence descriptor may have more than one locator objects and a
essence descriptor may have more than one locator object of the same subclass of
Locator. For example, a file source mob may have more than one locator for any of the
following reasons:

AAF Specification Version 1.1 PRELIMINARY DRAFT 119

– locators that provide hints to find the file on more than one operating system

– locators that provide more than one hint on the same operating system

EssenceGroup Class
The EssenceGroup class describes multiple digital representations of the same original content source.

The EssenceGroup class is a subclass of the Segment class.

An EssenceGroup object shall be a Segment in a Master Mob MobSlot.

Segment

EssenceGroup

+Choices : StrongReferenceSet
+StillFrame : StrongReference SourceReference

SourceReference

1..*

Choices

StillFrame

An EssenceGroup object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Choices PrefT:

StrongReferenceSet of
SourceReference

Has a set of Source References that identify the
alternate representations that may be chosen.
Required.

120 PRELIMINARY DRAFT AAF Specification Version 1.1

Pref:StillFrame PrefT:
StrongReference to
SourceReference

Has a Source Reference that identifies the essence
for a single-frame image representation of the
essence. Optional.

1. The length of each Source Clip in the Choices set must be the same as the length of the
Essence Group object.

2. The length of the StillFrame Source Clip must be 1.

Note Typically the different representations vary in essence format, compression, or
frame size. The application is responsible for choosing the appropriate implementation of
the essence.

Event Class
Event is an abstract class that defines a text comment, a trigger, or an area in the image that has an
associated interactive action.

Event is a subclass of Segment. Typically an Event is owned by a Sequence in an EventMobSlot.

The Event class is an abstract class; consequently an object that belongs to the Event class shall also
belong to a subclass of the Event class.

Event

+Position : Position
+Comment : String

Segment

An Event object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Position PrefT:Position Specifies the starting time of the event in the

EventMobSlot. Required.

AAF Specification Version 1.1 PRELIMINARY DRAFT 121

Pref:Comment PrefT:String Specifies the purpose of the event. Optional.

An Event specifies its position as an absolute time expressed in the edit rates of the EventMobSlot that
has it.

EventMobSlot Class
EventMobSlot has a Sequence of Events.

EventMobSlot is a subclass of MobSlot. An EventMobSlot object, as all MobSlots, has a concrete
Segment, which is typically a Sequence.

MobSlot

EventMobSlot

+EditRate : Rational

An EventMobSlot object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:EditRate PrefT:Rational Specifies the units in which the events specify

their starting time and duration. Required.

1. An EventMobSlot shall have a concrete Segment that is either an Event or a Sequence.

2. If an EventMobSlot has a Sequence, then the Sequence shall conform to the following rules:

A. All Segments in the Sequence shall be Events.

B. All Events in the Sequence shall belong to the same concrete subclass of Event.

C. All Events in the Sequence shall have the same DataDefinition as does the Sequence.

D. In a Sequence, the Position of each Event shall be greater than or equal to the Position of
the Event preceding it in the Sequence.

122 PRELIMINARY DRAFT AAF Specification Version 1.1

FileDescriptor Class
The FileDescriptor class describes essence associated with a File Source mob.

The FileDescriptor class is a subclass of the EssenceDescriptor class.

The FileDescriptor class is an abstract class; consequently an object that belongs to the FileDescriptor
class shall also belong to a subclass of the FileDescriptor class.

EssenceDescriptor

FileDescriptor

+SampleRate : Rational
+Length : Length
+ContainerDefinition : WeakReference
+CodecDefinition : WeakReference ContainerDefinition

CodecDefinition

A FileDescriptor object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:SampleRate PrefT:Rational The sample rate of the essence. Optional.
Pref:Length PrefT:Length Duration of the essence in sample units.

Optional.
Pref:ContainerFormat PrefT:

WeakReference to
ContainerDefinition

Identifies the container mechanism used to
store the EssenceData. Required.

AAF Specification Version 1.1 PRELIMINARY DRAFT 123

Pref:CodecDefinition PrefT:
WeakReference to
CodecDefinition

Identifies the mechanism used to compress and
uncompress samples of EssenceData or used
to convert samples of EssenceData from one
format to another. Required.

1. FileDescriptors describing static essence shall omit the SampleRate and Length properties.
FileDescriptors describing time-varying essence shall specify the SampleRate and Length
properties.

2. The Essence File Descriptor specifies the sample rate and the length in the sample rate of the
essence. The sample rate of the data can be different from the edit rate of the Source Clip in the
File Source mob.

Filler Class
The Filler class represents an unspecified value for the duration of the object.

The Filler class is a subclass of the Segment class.

Segment

Filler

The Filler class does not define any additional properties.

Note 1 Typically, a Filler object is used in a Sequence to allow positioning of a
Segment when not all of the preceding material has been specified. Another typical use
of Filler objects is to fill time in mob Slots and Nested scope Slots that are not
referenced or played.

Note 2 If a Filler object is played, applications can choose any appropriate blank
essence to play. Typically, a video Filler object would be played as a black section, and
an audio Filler object would be played as a silent section.

124 PRELIMINARY DRAFT AAF Specification Version 1.1

FilmDescriptor Class
The FilmDescriptor class describes film media.

The FilmDescriptor class is a subclass of the EssenceDescriptor class.

An FilmDescriptor object shall be the EssenceDescription of a Physical Source mob.

EssenceDescriptor

FilmDescriptor

+FilmFormat : FilmType
+FrameRate : UInt32
+PerforationsPerFrame : UInt8
+FilmAspectRatio : Rational
+Manufacturer : String
+Model : String

An FilmDescriptor object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:FilmFormat PrefT:FilmType Identifies the format of the film; one of the

following:

0 FT_NULL
1 FT_35MM
2 FT_16MM
3 FT_8MM
4 FT_65MM

Optional.

Pref:FrameRate PrefT:UInt32 Specifies the frame rate in frames per second.
Optional.

Pref:PerforationsPerFrame PrefT:UInt8 Specifies the number of perforations per frame
on the film stock. Optional.

Pref:FilmAspectRatio PrefT:Rational Ratio between the horizontal size of the frame
image and the vertical size of the frame
image. Optional.

AAF Specification Version 1.1 PRELIMINARY DRAFT 125

Property Name Type Explanation
Pref:Manufacturer PrefT:String A string to display to end users, indicating the

manufacturer of the film. Optional.

Pref:Model PrefT:String A string to display to end users, indicating the
manufacturer’s brand designation for the film.
Optional.

GPITrigger Class
GPITrigger specifies a trigger action that should be taken when the GPITrigger is reached.

GPITrigger is a subclass of Event. GPITrigger objects are owned by a Sequence in an EventMobSlot
object.

GPITrigger

+ActiveState : Boolean

Event

A GPITrigger object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:ActiveState PrefT:Boolean Specifies whether the event is turned on or off.

Required.

An GPITrigger object specifies a trigger action that should be taken when its position in time is reached.
The ActiveState property specifies whether the trigger should be set on or off.

126 PRELIMINARY DRAFT AAF Specification Version 1.1

Header Class
The Header class provides file-wide information and indexes. An AAF file shall have one and only one
Header object.

The Header class is a subclass of the InterchangeObject class.

ContentStorage
Content

Dictionary

1..*

IdentificationList

InterchangeObject

Header

+ByteOrder : Int16
+LastModified : TimeStamp
+Content : StrongReference
+Dictionary : StrongReference
+Version : VersionType
+IdentificationList : StrongReferenceVector

Identification

Dictionary

The Header object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:ByteOrder PrefT:Int16 Specifies the byte order for the AAF

file. One of the following:

’II’ Little-endian byte
order

’MM’ Big-endian byte
order

Required.

AAF Specification Version 1.1 PRELIMINARY DRAFT 127

Property Name Type Explanation
Pref:LastModified PrefT:TimeStamp Time and Date the file was last

modified. Required.

Pref:Content PrefT:StrongReference
to ContentStorage

Has the ContentStorage object that
has all Mobs and Essence Data in
the file. Required.

Pref:Dictionary PrefT:StrongReference
to Dictionary

Has a Dictionary object that has the
DefinitionObjects that define the
classes, control codes, data
definitions, effects, properties, and
types, Data Definition and Effect
Definition objects defined in the AAF
file. Required.

Pref:Version PrefT:VersionType Version number of this document
that the file conforms to; shall be 1.0
or higher. Required.

Pref:IdentificationList PrefT:
StrongReferenceVector
of Identification

Has an ordered set of Identification
objects, which identify the application
that created or modified the AAF file.
Required.

1. Each Edit Interchange file shall have exactly one Header object.

Note 1 The value of the ByteOrder property is either ’MM’ (hexadecimal
0x4d4d) for big-endian byte order, which is used in some architectures such as the
Motorola 680x0 architecture, or ’II’ (hexadecimal 0x4949) for little-endian byte order,
which is used in some architectures such as the Intel x86 architecture. Big-endian and
little-endian refer to whether the most- or least-significant byte is stored first. In the big-
endian byte order, the most-significant byte is stored first (at the address specified, which
is the lowest address of the series of bytes that constitute the value). In the little-endian
byte order, the least-significant byte is stored first. In both cases, bytes are stored with
the most-significant bit first.

Note 2 The value of LastModified represents the last time the file was modified.

HTMLClip Class
HTMLClip is a reference to HTML text essence.

The HTMLClip class is a subclass of the TextClip class.

128 PRELIMINARY DRAFT AAF Specification Version 1.1

TextClip

HTMLClip

+BeginAnchor : String
+EndAnchor : String

MobSlot

An HTMLClip object may have the optional properties listed in the following table.

Property Name Type Explanation
Pref:BeginAnchor PrefT:String Specifies the HTML tag that defines the start of

the text. Optional.

Pref:EndAnchor PrefT:String Specifies the HTML tag that defines the end of
the text. Optional.

Typically an HTMLClip is in a StaticMobSlot and defines a section of HTML text that is associated with
the essence data in a parallel TimelineMobSlot. The duration of the HTMLClip defines the extent of the
association with the parallel Mob Slot.

The BeginAnchor and EndAnchor properties specify the HTML tags that delineate the start and end of
the referenced text. The BeginAnchor tag shall precede the EndAnchor tag. If the BeginAnchor and
EndAnchor properties are omitted, the HTMLClip references all the HTML text in the essence data
object.

An HTMLClip object has an association with a MobSlot object describing HTML essence data. .

HTMLDescriptor Class
HTMLDescriptor specifies that the essence data is in HTML text format.

HTMLDescriptor is a subclass of FileDescriptor. An HTMLDescriptor object is owned by a File
SourceMob object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 129

FileDescriptor

HTMLDescriptor

HTMLDescriptor does not specify any properties.

An HTMLDescriptor object specifies that the File SourceMob describes an HTML object, which contains
text, formatted according to the HTML standard.

Identification Class
Identification provides information about the application that created or modified the file.

Identification is a subclass of InterchangeObject.

All Identification objects in a file shall be included in the IdentificationList of the Header object.

130 PRELIMINARY DRAFT AAF Specification Version 1.1

Identification

+GenerationAUID : AUID
+CompanyName : String
+ProductName : String
+ProductVersion : ProductVersion
+ProductVersionString : String
+ProductID : AUID
+Date : TimeStamp
+SDKVersion : ProductVersion
+Platform : String

InterchangeObject

An Identification object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:GenerationAUID PrefT:AUID AUID generated at the time the application

created or opened for modification the file.
Required.

Pref:CompanyName PrefT:String Specifies the name of the company or
organization that created the application.
Required.

Pref:ProductName PrefT:String Specifies the name of the application.
Required.

Pref:ProductVersion PrefT:ProductVersion Specifies the version number of the
application. Consists of 5 16-bit integer
values that specify the version of an
application. The first four integers specify the
major, minor, tertiary, and patch version
numbers. The fifth integer has the following
values:

0 kVersionUnknown: No additional
version information

1 kVersionReleased: Released product

2 kVersionDebug: Development
version

AAF Specification Version 1.1 PRELIMINARY DRAFT 131

Property Name Type Explanation
3 kVersionPatched: Released product
with patches

4 kVersionBeta: Prerelease beta test
version

5 kVersionPrivateBuild: Private build

Optional.

Pref:
ProductVersionString

PrefT:String Specifies the version number of the
application in string form. Required.

Pref:ProductID PrefT:AUID Identifies the application. Required.

Pref:Date PrefT:TimeStamp Time and date the application created or
modified the AAF file. Required.

Pref:SDKVersion PrefT:ProductVersion Specifies the version number of the SDK
library. Optional.

Pref:Platform PrefT:String Specifies the platform on which the
application is running. Optional.

The Identification class identifies the application that created or modified the file.

InterchangeObject Class
The InterchangeObject class is the root of the class hierarchy defined by this document.

The InterchangeObject class is an abstract class; consequently an object that belongs to the
InterchangeObject class shall also belong to a subclass of the InterchangeObject class.

132 PRELIMINARY DRAFT AAF Specification Version 1.1

InterchangeObject

+ObjClass : WeakReference
+Generation : WeakReference

ClassDefinition

Identification

ObjClass

Generation

An InterchangeObject shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:ObjClass PrefT:WeakReference to

ClassDefinition
Identifies the class of the object. Required.

Pref:Generation PrefT:WeakReference to
Identification

Identifies when the object was created or last
modified. Optional. If omitted, the object was
created or last modified in the first generation of
the file.

.

InterpolationDefinition Class
The InterpolationDefinition class specifies the mechanism used to calculate the values produced by a
VaryingValue using the specified ControlPoints.

The InterpolationDefinition class is a subclass of the DefinitionObject class.

All InterpolationDefinition objects shall be owned by a Dictionary object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 133

DefinitionObject

InterpolationDefinition

The InterpolationDefinition class does not define any additional properties.

IntraFrameMarker Class
IntraFrameMarker specifies an area in an image that can cause an action if a user specifies it during
composition playback (typically by clicking in the specified area).

IntraFrameMarker is a subclass of Event. IntraFrameMarker objects are owned by a Sequence in an
EventMobSlot.

Event

IntraFrameMarker

+HotSpotRect : Rectangle
+HotSpotMatte : StrongReference

SourceClip
0..1

HotSpotMatte

{Datakind is Matte}

134 PRELIMINARY DRAFT AAF Specification Version 1.1

An IntraframeMarker object shall have the properties listed in the following table as specified by the rules
following the table.

Property Name Type Explanation
Pref:HotSpotRect PrefT:Rectangle Specifies an area on the image that can cause an

interactive action. Optional.

Pref:HotSpotMatte PrefT:
StrongReference to
SourceClip

Specifies a SourceClip with a datadefinition of Matte.
Optional

1. An IntraFrameMarker object shall have at least one of the following properties: HotSpotRect and
HotSpotMatte.

2. If an IntraFrameMarker object has both a HotSpotRect and a HotSpotMatte property, the
HotSpotMatte property defines the interactive region. In this case, the HotSpotRect provides
supplementary information.

An IntraframeMarker defines a region of an image that has an interactive event associated with it.

Locator Class
The Locator class provides information to help find a file that contains the essence.

The Locator class is a subclass of the InterchangeObject class.

The Locator class is an abstract class; consequently object that belongs to the Locator class shall also
belong to a subclass of Locator.

InterchangeObject

Locator

The Locator class does not define any additional properties.

AAF Specification Version 1.1 PRELIMINARY DRAFT 135

MasterMob Class
The MasterMob class provides access to the File Source Mobs and EssenceData Objects.

The MasterMob class is a subclass of the Mob class.

All MasterMob objects in a file shall be owned by the ContentStorage object.

Mob

MasterMob

The MasterMob class does not define any additional properties.

An MasterMob object shall have one or more MobSlots.

MIDIFileDescriptor class
MIDIFileDescriptor specifies that essence data is in the MIDI music file format.

MIDIFileDescriptor is a subclass of FileDescriptor. MIDIFileDescriptor objects are owned by a File
Source Mob object.

136 PRELIMINARY DRAFT AAF Specification Version 1.1

FileDescriptor

MIDIFileDescriptor

MIDIFileDescriptor does not define any properties.

An MIDIFileDescriptor describes a MIDI object that contains multi-track MIDI stream data stored in the
Standard MIDI File 1.0 format. The MIDI file data may be stored with either timecode-based times or
metrical times. (Metrical times are stored as subdivisions of a quarter note, and related to real time by a
tempo map).

If the MIDI file data is stored with timecode-based times, the SampleRate property of the
MIDIFileDescriptor Class shall specify the MIDI file's delta-time interval expressed as an edit rate.
Referring to the MIDI file specification, this information is specified in the <division> word of the header
chunk. The SampleRate is the sample rate corresponding to the MIDI format specified in the <division>
word, multiplied by the "ticks per frame" value specified in the <division> word.

If the MIDI file data is stored with metrical times, the tempo map stored in the MIDI file data provides a
conversion from each metrical time to a real time (in seconds). The MIDI file will be referenced from
Mobs using only real times. The application must make an implicit conversion from the metrical times to
real time to determine which section of the MIDI file data is being referenced. As such, the SampleRate
property may be any arbitrary value. It merely provides a reference rate for specifying the length of the
MIDI file, and a resolution for identifying locations within the MIDI file by real time. We recommend using
a rate that matches the edit rate of tracks in CompositionMobs that reference MIDI data.

As the MIDI file specification states, tempo meta-events describing the tempo map must be stored in the
first track of the MIDI file. If there is no tempo meta-event at the beginning of first track, a default tempo
of 120 quarter notes per minute is assumed.

The MIDIFileDescriptor Length property should be the maximum of the times of the End of Track meta-
events for all tracks in the MIDI file, expressed in the SampleRate.

Tracks in MIDI files

A MIDI file may contain multiple tracks. The associated SourceMob must have a MobSlot for each track
stored in the MIDI file. The MobSlot PhysicalTrack property identifies the corresponding track within the
MIDI file, beginning with 1 for the first track in the MIDI file.

The MobSlot SlotName property provides the name of the track. The names stored in Track Name meta-
events within the MIDI file are ignored. It is recommended that the Track Name meta-events, if present,
match the TrackName properties of the MobSlots.

AAF Specification Version 1.1 PRELIMINARY DRAFT 137

Each MobSlot of the MIDIFileSourceMob should have as its Segment a single SourceClip that specifies
a null MobID, a DataDefinition of MIDI, and a length corresponding to the position of the End of Track
meta-event stored in the corresponding track of the MIDI file data.

Each MobSlot of the MIDIFileSourceMob should have an EditRate that matches the SampleRate of the
MIDIFileDescriptor (MIDD) attached to that SourceMob.

SMPTE timecode

The SMPTE Offset meta-event in the MIDI file data is ignored. It is recommended that this timecode
information be represented by a timecode track within the SourceMob associated with the MIDI file data.

Mob Class
The Mob class specifies a Metadata object, which can describe a composition, essence, or physical
media.

The Mob class is a subclass of the InterchangeObject class.

The Mob class is an abstract class; consequently an object that belongs to the Mob class shall also
belong to a subclass of Mob.

138 PRELIMINARY DRAFT AAF Specification Version 1.1

InterchangeObject

Mob

+MobID : AUID
+Name : String
+Slots : StrongReferenceVector
+LastModified : TimeStamp
+CreationTime : TimeStamp
+UserKLVData : StrongReferenceSet MobSlot

1..*

{ordered}

0..*

UserKLVData
TaggedValue

A Mob object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:MobID PrefT:AUID Unique Mob Identification. Required.

Pref:Name PrefT:String Name of mob for display to end user. Optional.

Pref:Slots PrefT:
StrongReferenceVector
of MobSlots

Has an ordered set of MobSlots. Required.

Pref:LastModified PrefT:TimeStamp Date and time when the Mob was last modified.
Required.

Pref:CreationTime PrefT:TimeStamp Date and time when the Mob was originally
created. Required.

Pref:UserKLVData PrefT:
StrongReferenceSet of
TaggedValues

Has a set of TaggedValues that specify user
Key-Length-Value (KLV) data or user comments.
Optional.

1. A Mob object shall have one or more MobSlots.

AAF Specification Version 1.1 PRELIMINARY DRAFT 139

Note 1 Mobs have a globally unique ID, and they are the only elements of an
AAF file that can be referenced from outside the file.

Note 2 MobSlots are ordered to allow ScopeReferences within one slot to
reference another slot. The Mob defines a scope consisting of the ordered set of
MobSlots. A ScopeReference object in a MobSlot can refer to any MobSlot that
precedes it. A ScopeReference returns the same time-varying values as the section in
the specified Mob Slot that corresponds to the starting point of the ScopeReference in
the MobSlot and the duration of the ScopeReference. In addition to Mobs, NestedScope
objects define scopes; however, their scope is limited to the Components owned by the
Nested scope object’s slots.

MobSlot Class
The MobSlot class represents a Segment of essence in a Mob. MobSlot objects are owned by Mobs. A
MobSlot object has a Segment, which can be a timeline, static, or event Segment.

The MobSlot class is a subclass of the InterchangeObject class.

All MobSlot objects shall be members of the set of Slots of a Mob object.

The MobSlot class is an abstract class; consequently, any object that belongs to the MobSlot class shall
also belong to a subclass of MobSlot.

InterchangeObject

MobSlot

+SlotID : Int32
+SlotName : String
+Segment : StrongReference
+PhysicalTrack : UInt32

Segment

An MobSlot object shall have the required properties and may have the optional properties described in
the following table.

140 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:SlotID PrefT:Int32 Specifies an integer that is used to reference the Mob

Slot. Required.

Pref:SlotName PrefT:String Specifies a text name for the Slot. Optional.

Pref:Segment PrefT:
StrongReference
to Segment

Specifies the value of the Slot. Required.

Pref:
PhysicalTrackNumber

PrefT:UInt32 Specifies the physical channel. Optional.

NestedScope Class
The NestedScope class defines a scope and has an ordered set of Segments.

The NestedScope class is a subclass of the Segment class.

Segment

NestedScope

+Slots : StrongReferenceVector
Segment1..*

A NestedScope object shall the required properties listed in the following table.

Property Name Type Explanation
Pref:Slots PrefT:

StrongReferenceVector of
Segment

Has an ordered set of Segments; the last segment
provides the value for the Nested Scope object.
Required.

1. The length of each Segment object in the set must be equal to the length of the Nested Scope
object.

2. The data kind of the last Segment in the set must be the same as the data kind of the Nested
Scope object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 141

Note 1 A Nested Scope object defines a scope and has an ordered set of
Segments and produces the value specified by the last Segment in the ordered set.
Nested Scopes are typically included in Composition Mobs to allow more than one
Component to share access to a Segment. You can allow this sharing by using a Nested
Scope object or by using the scope defined by a Mob.

NetworkLocator Class
NetworkLocator provides information to help find a file containing essence data.

NetworkLocator is a subclass of Locator. Locators can be used in FileDescriptors, which are owned by
FileSourceMobs.

Locator

NetworkLocator

+URLString : String

Property Name Type Explanation
Pref:URLString PrefT:String Universal Resource Locator (URL) for file

containing the essence data. Required.

The NetworkLocator has a URL that provides a hint to help an application find a file containing the
essence data.

OperationDefinition Class
The OperationDefinition class identifies an operation that is performed on an array of Segments.

The OperationDefinition class is a subclass of the DefinitionObject class.

All OperationDefinition objects shall be owned by a Dictionary object.

142 PRELIMINARY DRAFT AAF Specification Version 1.1

DefinitionObject

0..*

DegradeTo {ordered}

ParameterDefinition

OperationDefinition

+DataDefinition : WeakReference
+DegradeTo : WeakReferenceVector
+Category : ExtendibleEnum
+NumberInputs : Int32
+Bypass : UInt32
+ParametersDefined : WeakReferenceSet
+IsTimeWarp : Boolean

OperationDefinition

0..*

ParametersDefined

DataDefinition
DataDefinition

An OperationDefinition object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:DataDefinition PrefT:

WeakReference to
DataDefinition

Identifies the kind of data that is produced by
the operation. Required.

Pref:DegradeTo PrefT:
WeakReferenceVector
to OperationDefinition

Specify simpler operations that an
application can substitute for the defined
operation if it cannot process it. Optional

Pref:Category PrefT:
ExtendibleEnum

Specifies the kind of operation, such as
Video Effect, Audio Effect, or 3D operation.
Required.

Pref:NumberInputs PrefT:Int32 Specifies the number of input segments. A
value of -1 indicates that the effect can have
any number of input segments. Required.

Pref:Bypass PrefT:Uint32 Specifies then array index (1-based) of the
input segment which is the primary input.
Optional.

AAF Specification Version 1.1 PRELIMINARY DRAFT 143

Property Name Type Explanation
Pref:ParametersDefined PrefT:

WeakReferenceSet of
ParameterDefinition

Specify the Parameters that can be used as
controls for the operation. Optional

Pref:IsTimeWarp PrefT:Boolean If true, specifies that the duration of the input
segments can be different from the duration
of the Operation. Optional; default value is
false.

OperationGroup Class
The OperationGroup class contains an ordered set of Segments and an operation that is performed on
these Segments.

The OperationGroup class is a subclass of the Segment class

An OperationGroup object can only be part of a Composition mob.

Segment

OperationGroup

+Operation : WeakReference
+InputSegments : StrongReferenceVector
+Parameters : StrongReferenceSet
+Rendering : StrongReference

0..*

Parameters

SourceReference
Rendering

Parameter

Operation

Segment
0..*

InputSegments {ordered}

OperationDefinition

144 PRELIMINARY DRAFT AAF Specification Version 1.1

An Effect object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:
OperationDefinition

PrefT:WeakReference
to OperationDefinition

Has a weak reference to an Operation
Definition that identifies the kind of
operation. Required.

Pref:InputSegments PrefT:
StrongReferenceVector
of Segment

Has an array of input segments for the
operation. Optional.

Pref:Parameters PrefT:
StrongReferenceSet of
Parameter

Has a set of control Parameters. Optional.

Pref:Rendering PrefT:StrongReference
to SourceReference

Specifies a rendered or precomputed version
of the operation. Optional.

1. In all Effect objects, the length of the Rendering Source Clip must each equal the length of the
Effect.

2. In Effect objects whose Effect Definition object does not specify a time warp the length of each
input Segment each equal the length of the Effect.

Parameter Class
Parameter class specifies a control argument for an effect.

Parameter class is a subclass of Object. Parameter objects are owned by Effect objects.

Parameter is an abstract class; consequently, any object that belongs to the Parameter class shall also
belong to a subclass of Parameter.

AAF Specification Version 1.1 PRELIMINARY DRAFT 145

Parameter

+Definition : WeakReference
+Type : WeakReference

InterchangeObject

TypeDefinition

ParameterDefinition

A Parameter object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Definition PrefT:WeakReference

to ParameterDefinition
Identifies the Parameter. Required.

Pref:Type PrefT:WeakReference
to TypeDefinition

Specifies the type of data that can be stored in the
Parameter. Required.

1. A Parameter shall specify the same TypeDefinition as specified by the ParameterDefinition that is
referenced in the EffectSlot.

A Parameter object is an effect control, which specifies values for adjustments in the way the effect
should be performed.

An effect can have constant control parameters or have control parameters whose values vary over
time. For example, a picture-in-picture effect where the size and transparency of the inserted picture
stays constant throughout the effect has constant control parameters, but a picture-in-picture effect that
starts with a small inserted picture that grows larger during the effect has control arguments with time-
varying values.

A constant control argument can be specified with a Constant Value object. A time-varying value is
specified with a Varying Value object.

146 PRELIMINARY DRAFT AAF Specification Version 1.1

ParameterDefinition Class
The ParameterDefinition class defines a kind of Parameter for an effect.

The ParameterDefinition class is a subclass of the DefinitionObject class.

All ParameterDefinition objects in a file shall be owned by the Dictionary object.

ParameterDefinition

+Type : WeakReference

DefinitionObject

Type
TypeDefinition

A ParameterDefinition object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:Type PrefT:WeakReference

to TypeDefinition
Specifies the data type of the Parameter.
Required.

PluginDescriptor Class
The PluginDescriptor class identifies code objects that provide an implementation for a DefinitionObject,
such as a CodecDefinition or an InterpolationDefinition.

AAF Specification Version 1.1 PRELIMINARY DRAFT 147

The PluginDescriptor class is a subclass of the InterchangeObject class.

All PluginDescriptor objects shall be owned by a Dictionary object.

InterchangeObject

PluginDescriptor

+Identification : AUID
+Name : String
+Description : String
+CategoryClass : WeakReference
+VersionNumber : VersionType
+VersionString : String
+Manufacturer : String
+ManufacturerInfo : StrongReference
+ManufacturerID : AUID
+Platform : AUID
+MinPlatformVer : VersionType
+MaxPlatformVer : VersionType
+Engine : AUID
+MinEngineVer : VersionType
+MaxEngineVer : VersionType
+PluginAPI : AUID
+MinPluginAPIVer : VersionType
+MaxPluginAPIVer : VersionType
+SoftwareOnly : Boolean
+Accelerator : Boolean
+Locators : StrongReferenceVector
+Authentication : Boolean

DefinitionObject
CategoryClass

NetworkLocator
ManufacturerInfo

NetworkLocator0..*

Locators {ordered}

148 PRELIMINARY DRAFT AAF Specification Version 1.1

All PluginDescription objects shall be owned by a Dictionary object. A PluginDescription object shall have
the required properties and may have the optional classes listed in the following table

Property Name Type Explanation
Pref:Identification PrefT:AUID Specifies the unique identifier for the

PluginDescriptor. Required.

Pref:Name PrefT:String Specifies the display name of the
PluginDescriptor. Required.

Pref:Description PrefT:String Provides an explanation of the use of the
PluginDescriptor. Optional.

Pref:CategoryClass PrefT: WeakReference
to DefinitionObject

Identifies the subclass of DefinitionObject that
defines the object that the plugin provides an
implementation. Required.

Pref:VersionNumber PrefT: VersionType Specifies the version of the plugin. Required.
Pref:VersionString PrefT:String Specifies a string that can be used to identify

the plugin version to the user. Optional.
Pref:Manufacturer PrefT:String Specifies a string that can be used to identify

the plugin manufacturer to the user. Optional.
Pref:
ManufacturerInfo

PrefT:
StrongReference to
NetworkLocator

Specifies a NetworkLocator that identifies a
web page containing information about the
manufacturer. Optional.

Pref:ManufacturerID PrefT:AUID Specifies a SMPTE label or other unique
identifier that is assigned to identify the
manufacturer. Optional.

Pref:Platform PrefT:AUID Identifies the platform environment, which
consists of the hardware platform and the
operating system, required by the plugin.
Optional.

Pref:
MinPlatformVersion

PrefT: VersionType Specifies the minimum version number of the
specified platform that the plugin requires.
Optional.

Pref:
MaxPlatformVersion

PrefT: VersionType Specifies the maximum version number of the
specified platform that the plugin requires.
Optional.

Pref:Engine PrefT:AUID Identifies the software subsystem used for
essence management and playback used by
the plugin. Optional.

Pref:
MinEngineVersion

PrefT: VersionType Specifies the minimum version number of the
specified engine that the plugin requires.
Optional.

Pref:
MaxEngineVersion

PrefT: VersionType Specifies the maximum version number of the
specified engine that the plugin requires.
Optional.

Pref:PluginAPI PrefT:AUID Identifies the plugin interfaces supported by
the plugin. Optional.

AAF Specification Version 1.1 PRELIMINARY DRAFT 149

Property Name Type Explanation
Pref:MinPluginAPI PrefT: VersionType Specifies the minimum version number of the

specified plugin interfaces that the plugin
supports. Optional.

Pref:MaxPluginAPT PrefT: VersionType Specifies the maximum version number of the
specified plugin interfaces that the plugin
supports. Optional.

Pref:SoftwareOnly PrefT:Boolean Specifies if the plugin is capable of executing
in a software-only environment. Optional;
default value is False.

Pref:Accelerator PrefT:Boolean Specifies if the plugin is capable of using
hardware to accelerate essence processing.
Optional; default value is False.

Pref:Locators PrefT:
StrongReferenceVector
of Locator

Specifies an ordered list of locators that
identify locations that provide access to the
plugin implementation. Optional.

Pref:Authentication PrefT:Boolean Specifies that the plugin implementation
supports authentication. Optional; default
value is False.

PropertyDefinition Class
PropertyDefinition describes properties allowed for a class.

PropertyDefinition is a subclass of DefinitionObject. An PropertyDefinition object is a owned by a
ClassDefinition object. An PropertyDefinition object has an association with a TypeDefinition object that
defines the property type.

150 PRELIMINARY DRAFT AAF Specification Version 1.1

DefinitionObject

PropertyDefinition

+Type : WeakReference
+IsSearchable : Boolean
+IsOptional : Boolean
+DefaultValue : DataValue
+LocalIdentification : UInt32

Type
TypeDefinition

A PropertyDefinition object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Type PrefT:WeakReference

to TypeDefinition
Specifies the property type. Required.

Pref:IsSearchable PrefT:Boolean Identifies properties that can contain user-
searchable data. Optional.

Pref:IsOptional PrefT:Boolean Specifies whether objects instances can omit a
value for the property. Required.

Pref:DefaultValue PrefT:DataValue Specifies a default value for optional
properties. Optional.

Pref:
LocalIdentification

PrefT:UInt32 Specifies a local integer identification that is
used to identify the property in the AAF file.
Required.

The PropertyDefinition object specifies that a property can be used in a class. For classes defined by this
specification, the ClassDefinition object can omit any properties defined in this document.

Pulldown Class
Pulldown converts between film frame rates and videotape frame rates.

Pulldown is a subclass of Segment. Pulldown has either a SourceClip or a Timecode object. Pulldown
objects are typically used in FileSourceMobs and Physical SourceMobs.

AAF Specification Version 1.1 PRELIMINARY DRAFT 151

Segment

Pulldown

+InputSegment : StrongReference
+PulldownKind : PulldownKindType
+PulldownDirection : PulldownDirectionType
+PhaseFrame : PhaseFrameType Segment

{SourceClip or Timecode}

A Pulldown object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:InputSegment PrefT:StrongReference to

Segment
Has a Segment that is either a SourceClip or
Timecode. The length of the SourceClip or
Timecode object is in the edit units determined
by the PulldownKind and PulldownDirection.
Required

152 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:PulldownKind PrefT:PulldownKindType Specifies whether the Pulldown object is

converting from NTSC or PAL and whether
frames are dropped or the video is played at
another speed. Values are:

0 kTwoThreePD Converting between
NTSC and film by dropping or adding frames

1 kPalPD Converting between PAL and
film by dropping or adding frames

2 kOneToOneNTSC Converting
between NTSC and film by speeding up or
slowing down the frame rate.

3 kOneToOnePAL Converting
between PAL and film by speeding up or
slowing down the frame rate.

4 kVideoTapNTSC Converting
between NTSC and film by recording original
film and video sources simultaneously.

Required.

Pref:
PulldownDirection

PrefT:
PulldownDirectionType

Specifies whether the Pulldown object is
converting from tape to film speed or from film
to tape speed. Values are:

0 kVideoToFilmSpeed The
InputSegment is at video speed and the Mob
track owning the Pulldown object is at film
speed.

1 kFilmToVideoSpeed The
InputSegment is at film speed and the Mob
track owning the Pulldown object is at video
speed.

Required.

Pref:PhaseFrame PrefT:PhaseFrameType Specifies the phase within the repeating
pulldown pattern of the first frame after the
pulldown conversion. A value of 0 specifies
that the Pulldown object starts at the beginning
of the pulldown pattern. Required.

An Pulldown object provides a mechanism to convert from essence between video and film rates and
describes the mechanism that was used to convert the essence. Pulldown objects are typically used in
three ways:

1. In a tape SourceMob to describe how the videotape was created from film

2. In a file SourceMob that has digital essence at film speed to describe how the digital essence
was created from the videotape

3. In a Mob to create Timecode tracks at different edit rates

AAF Specification Version 1.1 PRELIMINARY DRAFT 153

The object owned by the Pulldown object has an edit time specified by the essence speed that the
Pulldown object is converting from.

Each kind of pulldown identifies the speed of the tape. If two SourceMobs have a pulldown relationship,
the edit rates of the video tracks should correspond to the frame rate of the essence.

RGBADescriptor Class
The RGBADescriptor class specifies that a File Source Mob is associated with video content data
formatted with three color component or with three color components and an alpha component.

The RGBADescriptor class is a subclass of the DigitalImageDescriptor class.

An RGBADescriptor object shall be the EssenceDescription in a File Source Mob.

DigitalImageDescriptor

RGBADescriptor

+PixelLayout : CompCodeArray
+PixelStructure : CompSizeArray
+Palette : DataValue
+PaletteLayout : CompCodeArray
+PaletteStructure : CompSizeArray

An RGBADescriptor object shall have the required properties and may have the optional properties listed
in the following table.

154 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:PixelLayout PrefT:CompCodeArray An array of characters that specifies

the order that the color components
of a pixel are stored in the image.
Each element in the array represents
a different color component. The
array can contain the following
characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
‘P’ Palette code
‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear
no more than one time in the array.
The array is terminated by a 0 byte
and has a maximum of 8 elements
(including the terminating byte). Note
that a byte with the ASCII ‘0’ indicates
no component, and a byte with a 0
(ASCII NULL) terminates the string.
Required.

Pref:PixelStructure PrefT:CompSizeArray An array of UInt8 that specifies the
number of bits allocated to store each
component in the order specified in
the PixelLayout property. The array is
terminated by a 0 byte and has a
maximum of 8 elements (including
the terminating byte). Required.

Pref:Palette PrefT:DataValue An array of color values that are used
to specify an image. Optional.

AAF Specification Version 1.1 PRELIMINARY DRAFT 155

Property Name Type Explanation
Pref:PaletteLayout PrefT:CompCodeArray An array of characters that specifies

the order that the color components
are stored in the palette. Each
element in the array represents a
different color component. The array
can contain the following characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
 ‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear
no more than one time in the array.
The array is terminated by a 0 byte
and has a maximum of 8 elements
(including the terminating byte). Note
that a byte with the ASCII ‘0’ indicates
no component, and a byte with a 0
(ASCII NULL) terminates the string.
Optional.

Pref:PaletteStructure PrefT:CompSizeArray An array of UInt8 that specifies the
number of bits allocated to store each
component in the order specified in
the PaletteLayout property. The array
is terminated by a 0 byte and has a
maximum of 8 elements (including
the terminating byte). Optional.

1. If the PixelLayout property includes an ‘R’, ‘G’, or ‘B’, then it shall not include a ‘P’. If the
PixelLayout property includes a ‘P’, then it shall not include an ‘R’, ‘G’, or ‘B’.

2. If the PixelLayout property includes a ‘P’, then the RGBADescriptor object shall have the Palette,
PaletteLayout, and PaletteStructure properties.

Note 1 An RGBADescriptor object describes content data that contains
component-based images where each pixel is made up of a red, a green and a blue
value. Optionally, an alpha value can be included in each pixel. The alpha value
determines the transparency of the color. Each pixel can be described directly with a
component value or a by an index into a pixel palette.

Note 2 Properties in the RGBADescriptor allow you to specify the order that the
color components are stored in the image, the number of bits needed to store a pixel,
and the bits allocated to each component.

156 PRELIMINARY DRAFT AAF Specification Version 1.1

Note 3 If a color palette is used, the descriptor allows you to specify the color
palette and the structure used to store each color in the palette.

Note 4 RGBA content data can be converted to CDCI and then compressed
with JPEG. Once the data has been converted and compressed, it is described by a
CDCIDescriptor Essence Descriptor.

ScopeReference Class
The ScopeReference class refers to a section in the specified Mob Slot or Nested Scope slot.

The ScopeReference class is a subclass of the Segment class.

Segment

ScopeReference

+RelativeScope : UInt32
+RelativeSlot : UInt32

EditInterchange

{MobSlot or NestedScope slot}

An ScopeReference object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:RelativeScope PrefT:UInt32 Specifies the number of Nested Scopes to pass

to find the Nested Scope or Mob owning the slot.
Required.

Pref:RelativeSlot PrefT:UInt32 Specifies the number of slots that precede the
slot owning the Scope Reference to pass to find
the slot referenced. Required.

1. The data kind of the Segment in the referenced slot must be the same as the data kind of the
Scope Reference object.

2. The value of RelativeScope must be less than or equal to the number of Nested Scope objects
that has the Scope Reference. If the Scope Reference is not owned by a Nested Scope object,

AAF Specification Version 1.1 PRELIMINARY DRAFT 157

then it can only refer to a slot defined by the mob’s scope and the RelativeScope must have a
value of 0.

3. The value of RelativeSlot must be greater than 0 and less than or equal to the number of slots
that precede it within the scope specified by RelativeScope.

4. If the scope reference references a mob slot that specifies a different edit rate than the mob slot
owning the scope reference, the Length value and the offset in the track owning the scope
reference must be converted from the edit rate of the track owning the scope reference to the
edit rate of the referenced track.

Note 1 A Scope Reference object has the same time-varying values as the
section of the Nested Scope slot or Mob Slot that it references. Scope Reference objects
allow one or more objects to share the values produced by a section of a slot.

Note 2 If a Scope Reference specifies a mob slot, the corresponding section of
the slot is the one that has the equivalent starting position from the beginning of the mob
slot and the equivalent length as the Scope Reference object has within its mob slot. If
the specified Mob Slot has a different edit rate than the Mob Slot owning the Scope
Reference, the starting position and duration are converted to the specified Mob Slots
edit units to find the corresponding section.

Note 3 If a Scope Reference specifies a Nested Scope slot, the corresponding
section of the slot is the one that has the same starting position offset from the beginning
of the Nested Scope segments and the same duration as the Scope Reference object
has in the specified scope.

Note 4 Relative scope is specified as an unsigned integer. It specifies the
number of nested scopes that you must pass through to find the referenced scope. A
value of 0 specifies the current scope, that is the innermost Nested Scope object that
has the Scope Reference or the Mob scope if no Nested Scope object has it. A value of
1 specifies the scope level that has the Nested Scope object that has the Scope
Reference.

Note 5 Relative slot is specified as a positive integer. It specifies the number of
preceding slots that you must pass to find the referenced slot within the specified relative
scope. A value of 1 specifies the immediately preceding slot.

Note 6 If a ScopeReference refers to a MobSlot, the MobSlot shall belong to the
same subclass of MobSlot as the MobSlot owning the ScopeReference object. This
means that ScopeReferences should not be used to convert between timeline, static,
and event data; use SourceClips or SourceClips in conjunction with Effect to perform
these conversions.

158 PRELIMINARY DRAFT AAF Specification Version 1.1

Segment Class
The Segment class represents a Component that is independent of any surrounding object.

The Segment class is a subclass of the Component class.

The Segment class is an abstract class; consequently an object that belongs to the Segment class shall
also belong to one of the subclasses of Segment.

Component

Segment

Segment does not define any additional properties.

Selector Class
The Selector class provides the value of a single Segment while preserving references to unused
alternatives.

The Selector class is a subclass of the Segment class.

AAF Specification Version 1.1 PRELIMINARY DRAFT 159

Segment

Selector

+Selected : StrongReference
+Alternates : StrongReferenceSet

Segment

Segment
Selected

0..*

Alternates

The Selector class shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Selected PrefT:

StrongReference to
Segment

Has the selected Segment. Required.

Pref:Alternates PrefT:
StrongReferenceSet
of Segment

Has a set of unused alternative Segments.
Optional.

1. The duration of the selected Segment and of each alternative Segment shall equal the duration
of the Selector object.

2. The data kind of the selected Segment and of each alternative Segment shall be the same as
the data kind of the Selector object.

Note A Selector object represents an editing decision. This is in contrast with a
Essence Group object which presents a group of alternative implementations of the
same essence that the application can choose from based on the most appropriate or
efficient essence format among the alternatives.

Sequence Class
The Sequence class combines an ordered list of Segments and Transitions.

160 PRELIMINARY DRAFT AAF Specification Version 1.1

The Sequence class is a subclass of Segment.

Segment

Sequence

+Components : StrongReferenceVector

Component
1..*

{ordered}

A Sequence object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Components PrefT:

StrongReferenceVector of
Component

Has an ordered set of Component objects.
Required.

1. The first and last Component in the ordered set shall be Segment objects

2. A Transition object shall only appear in a Sequence between two Segment objects. The length of
each of these Segments shall be greater than or equal to the length of the Transition.

3. If a Segment object has a Transition before it and after it, the sum of the lengths of the
surrounding Transitions shall be less than or equal to the length of the Segment that they
surround.

4. The length of the Sequence shall be equal to the sum of the length of all Segments directly
owned by the Sequence minus the sum of the lengths of all Transitions directly owned by the
Sequence.

5. The data kind of each Component in the Sequence object shall be the same as the data kind of
the Sequence.

Note 1 The Sequence object is the mechanism for combining sections of
essence to be played in a sequential manner.

AAF Specification Version 1.1 PRELIMINARY DRAFT 161

Note 2 If a Sequence object has a Segment followed by another Segment, after
the first Segment is played, the following one begins immediately

Note 3 If a Sequence object has a Transition object, the last section of the
Segment that precedes the Transition, the Transition, and the first section of the
Segment that follows the Transition are overlapped. The duration of the Transition
determines the duration of the section of the preceding and following Segments that are
overlapped.

SourceClip Class
The SourceClip class represents the content data and identifies the source of the content data.

The SourceClip class is a subclass of the SourceReference class.

SourceReference

SourceClip

+StartTime : Position
+FadeInLength : Length
+FadeInType : FadeType
+FadeOutLength : Length
+FadeOutType : FadeType

A SourceClip object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:StartTime PrefT:Position Specifies the offset from the origin of the

referenced Mob Slot in edit units determined by
the Source Clip object’s context. If the
SourceID has a value 0, then StartTime must
have a 0 value. Optional; see rule 1.

Pref:FadeInLength PrefT:Length Specifies the length of an audio fade in to be
applied to the Source Clip. Optional.

162 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:FadeInType PrefT:FadeType Specifies the type of the audio fade in; may

have one of the following values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade in types
may be defined. Optional.

Pref:FadeOutLength PrefT:Length Specifies the length of an audio fade out to be
applied to the Source Clip. Optional

Pref:FadeOutType PrefT:FadeType Specifies the type of the audio fade out; may
have one of the following values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private audio fade
types may be defined. Optional.

1. If the SourceClip references a TimelineMobSlot or an EventMobSlot, then the StartTime
property shall be specified. If the SourceClip references a StaticMobSlot, then the StartTime
property shall not be specified.

2. The data definition of the Segment owned by the referenced Mob Slot shall be the same the data
definition of the Source Clip object.

3. The fade properties are only allowed when the Component DataDefinition specifies Sound.

4. If the source clip references a track that specifies a different edit rate than the track owning the
source clip, the StartTime and Length values must be converted from the edit rate of the track
owning the source clip to the edit rate of the referenced track.

Note 1 In a Composition Mob, Source Clips reference a section of essence by
specifying the Master Mob that describes the essence.

Note 2 In a Master Mob, Source Clips reference the essence by specifying the
File Source Mob that is associated with the essence.

Note 3 In a File Source Mob, Source clips reference the content data stored on
a physical media, such as tape or film, by specifying the Physical Source Mob that
describes the media.

Note 4 In a Physical Source Mob, Source Clips reference the content data
stored on a previous generation of physical media by specifying the Physical Source
Mob that describes the media.

AAF Specification Version 1.1 PRELIMINARY DRAFT 163

Note 5 If a Source Mob represents the original essence source and there is no
previous generation, then its Source Clips must specify a value 0-0-0 for its SourceID
and 0 values for SourceTrackID and StartTime.

SourceMob Class
The SourceMob class describes content data that is either stored in a digital form in a file or stored on a
physical media, such as tape or film.

The SourceMob class is a subclass of the Mob class.

All SourceMob objects shall be owned by the ContentStorage object.

Mob

SourceMob

+EssenceDescription : StrongReference

EssenceDescriptor

A SourceMob object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:EssenceDescription PrefT:

StrongReference
to EssenceDescriptor

Describes the format of the essence
associated with the Source Mob. Required.

1. A SourceMob object shall have one or more MobSlots.

164 PRELIMINARY DRAFT AAF Specification Version 1.1

2. An SourceMob object shall either be a File Source Mob or a Physical Source Mob. If a
SourceMob has a Essence Descriptor that belongs to the FileDescriptor class, then the
SourceMob is a File Source Mob. If a SourceMob has a Essence Descriptor that does not belong
to the FileDescriptor class, then the SourceMob is a Physical Source Mob.

3. A File Source Mob shall have at least one MobSlot. If the digital essence is a stream of
interleaved content data, then the File Source Mob shall at least have one MobSlot for each
channel of interleaved content data.

4. A Physical Source Mob describes physical media, such as an audio tape, film, or videotape. A
Physical Source Mob shall have at least one MobSlot. If the physical media contains more than
one track of content data, then the Physical Source Mob should have one MobSlot for each
physical track. In addition, the Physical Source Mob may have a MobSlot for timecode data and
may have a MobSlot for edgecode data.

5. The MobSlots in a File Source Mob should have a Segment that is a Source Clip. If there is a
Mob that describes the previous generation of content data, the Source Clip should specify the
MobID of that Mob. The previous generation can be a Physical Source Mob or another File
Source Mob. If there is no previous generation of content data or there is no Mob describing it,
the Source Clip should specify a MobID of 0.

6. The MobSlot in a Physical Source Mob should have a Segment that is a Source Clip, Timecode,
or Edgecode. If there is a Mob that describes the previous generation of content data, the Source
Clip should specify the MobID of that Mob. The previous generation should be a Physical Source
Mob. If there is no previous generation of content data or there is no Mob describing it, the
Source Clip should specify a MobID of 0.

The length of the Segment in the Mob Slot indicates the duration of the essence. If you create a Source
Mob for a physical media source and you do not know the duration of the essence, specify a length of 24
hours.

The essence represented by a Source Mob is immutable. If the essence changes, such as if a videotape
is redigitized, you must create a new Source Mob with a new Mob ID.

SourceReference Class
SourceReference is an abstract class that represents the essence or other data described by a MobSlot
in a Mob.

SourceReference is an abstract class; any object that belongs to the SourceReference class shall also
belong to a subclass of SourceReference.

AAF Specification Version 1.1 PRELIMINARY DRAFT 165

Segment

SourceReference

+SourceID : WeakReference
+SourceMobSlotID : UInt32

Mob

A SourceReference object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:SourceID PrefT:

WeakReference to
Mob

Identifies the Mob being referenced. If
WeakReference is to an object that specifies a 0
value for the MobID, it means that the Mob
owning the SourceReference describes the
original source. If the property is omitted, the
SourceReference is specifying another MobSlot
in the same Mob. Optional.

Pref:SourceMobSlotID PrefT:UInt32 Specifies the MobSlotID of a Mob Slot within the
specified Mob. If the SourceID has a value 0,
then SourceTrackID shall also have a 0 value.
Required.

An SourceReference object in a Mob refers to a MobSlot in another Mob by specifying the second Mob's
Mob ID and the MobSlot ID of the MobSlot owned by it. To create a SourceReference that refers to a
MobSlot within the same Mob as the SourceReference, omit the SourceID property.

166 PRELIMINARY DRAFT AAF Specification Version 1.1

StaticMobSlot Class
StaticMobSlot describes essence data that has no relationship to time, such as a static image.

StaticMobSlot is a subclass of MobSlot. MobSlot objects are owned by Mobs.

MobSlot

StaticMobSlot

The StaticMobSlot class does not define any properties.

StaticMobSlot objects have Segments that do not have any relationship with time; consequently, a
StaticMobslot does not define an edit rate.

TaggedValue Class
The TaggedValue class specifies a user-defined tag, key and value.

The TaggedValue class is a subclass of the InterchangeObject class.

InterchangeObject

TaggedValue

+Name : String
+Key : WeakReference
+Value : DataValue TypeDefinition

AAF Specification Version 1.1 PRELIMINARY DRAFT 167

A TaggedValue object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Name PrefT:Sting User-specified tag. Optional.

Pref:Key PrefT:WeakReference
to TypeDefinition

Specifies the key of a Key-Length-Value or the type.
Required.

Pref:Value PrefT:DataValue User-specified value. Required.

TapeDescriptor Class
The TapeDescriptor class describes audio tape or videotape media.

The TapeDescriptor class is a subclass of the EssenceDescriptor class.

An TapeDescriptor object shall be the EssenceDescription of a Physical Source mob.

EssenceDescriptor

TapeDescriptor

+FormFactor : TapeCaseType
+VideoSignal : VideoSignalType
+TapeFormat : TapeFormatType
+Length : UInt32
+Manufacturer : String
+Model : String

An TapeDescriptor object shall have the required properties and may have the optional properties listed
in the following table.

168 PRELIMINARY DRAFT AAF Specification Version 1.1

Property Name Type Explanation
Pref:FormFactor PrefT:TapeCaseType Describes the physical size of the tape;

may have one of the following values:

0 3/4 inch videotape
1 VHS video tape
2 8mm videotape
3 Betacam videotape
4 Compact cassette
5 DAT cartridge
6 Professional audio

tape
Optional.

Pref:VideoSignal PrefT:VideoSignalType Describes the video signal
type; may have one of the
following values:

0 NTSC
1 PAL
2 SECAM

Optional.
Pref:TapeFormat PrefT:TapeFormatType Describes the format of the tape; may

have one of the following values:

0 Betacam
1 BetacamSP
2 VHS
3 S-VHS
4 8mm
5 Hi8

Optional.

Pref:Length PrefT:UInt32 Tape capacity in minutes. Optional.

Pref:Manufacturer PrefT:String Text string to display to end users,
identifying the manufacturer of the tape.
Optional.

Pref:Model PrefT:String Text string to display to end users,
identifying the manufacturer’s brand
designation of the tape. Optional.

TextClip Class
TextClip has a weak reference to a MobSlot describing text essence data.

TextClip is an abstract class and is a subclass of SourceReference.

AAF Specification Version 1.1 PRELIMINARY DRAFT 169

SourceReference

TextClip

MobSlot

The TextClip class does not define any properties.

TextClip references a Mob Slot containing text essence data.

TextLocator Class
The TextLocator class provides information to help find a file containing the content data or to help find
the physical media.

The TextLocator class is a subclass of the Locator class.

A TextLocator object shall be the a member of the set of locators in a Essence Descriptor in either a File
Source Mob or a Physical Source Mob.

170 PRELIMINARY DRAFT AAF Specification Version 1.1

Locator

TextLocator

+Name : String

A TextLocator object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Name PrefT:String Text string containing information to help find the

file containing the essence or the physical media.
Required.

A TextLocator object provides information to the user to help locate the file containing the essence or to
locate the physical media. The TXTLLocator is not intended for applications to use without user
intervention.

TIFFDescriptor Class
The TIFFDescriptor class specifies that a File Source Mob is associated with video content data
formatted according to the TIFF specification.

The TIFFDescriptor class is a subclass of the FileDescriptor.

The TIFF video format is a video format which may be used in AAF files, but the TIFF format is not
required for compliance with this document. It is preferable to use either the RGBA or CDCI format for
video content data.

A TIFFDescriptor object shall be owned by a File Source Mob.

AAF Specification Version 1.1 PRELIMINARY DRAFT 171

FileDescriptor

TIFFDescriptor

+IsUniform : Boolean
+IsContiguous : Boolean
+LeadingLines : Int32
+TrailingLines : Int32
+JPEGTableID : JPEGTableIDType
+Summary : DataValue

A TIFFDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:IsUniform PrefT:Boolean True for data having the same number

of rows per strip throughout. Required.

Pref:IsContiguous PrefT:Boolean True for data stored in contiguous bytes.
Required.

Pref:LeadingLines PrefT:Int32 Number of leading lines to be thrown
away. Optional; default value is 0.

Pref:TrailingLines PrefT:Int32 Number of trailing lines to be thrown
away. Optional; default value is 0.

Pref:JPEGTableID PrefT:JPEGTableIDType Registered JPEG table code or
JT_NULL. Optional.

Pref:Summary PrefT:DataValue A copy of the TIFF IFD (without the
sample data). Required.

Note 1 A TIFF Image Descriptor object describes the TIFF image data
associated with the Source Mob. The image data is formatted according to the TIFF
specification, Revision 6.0, available from Aldus Corporation. The TIFF object type
supports only the subset of the full TIFF 6.0 specification defined as baseline TIFF in
that document.

172 PRELIMINARY DRAFT AAF Specification Version 1.1

Note 2 The JPEGTableID is an assigned type for preset JPEG tables. The table
data must also appear in the TIFFData object along with the sample data, but
cooperating applications can save time by storing a preapproved code in this property
that presents a known set of JPEG tables.

Timecode Class
The Timecode class stores videotape or audio tape timecode information.

The Timecode class is a subclass of the Segment class.

Segment

Timecode

+Start : Position
+FPS : UInt16
+Drop : Boolean

A Timecode object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Start PrefT:Position Specifies the timecode at the beginning of the

segment. Required.

Pref:FPS PrefT:UInt16 Frames per second of the videotape or audio tape.
Required.

Pref:Drop PrefT:Boolean Indicates whether the timecode is drop (True value) or
nondrop (False value). Required.

Note A Timecode object can typically appear in either a Source Mob or in a
Composition Mob. In a Source Mob, it typically appears in a Mob Slot in a Source Mob
that describes a videotape or audio tape. In this context, it describes the timecode that
exists on the tape. In a Composition Mob, it represents the timecode associated with the
virtual media represented by the Composition Mob. If the Composition Mob is rendered
to a videotape, the Timecode should be used to generate the timecode on the videotape.

AAF Specification Version 1.1 PRELIMINARY DRAFT 173

TimecodeStream Class
TimecodeStream specifies as stream of timecode data.

TimecodeStream is an abstract class and is a subclass of Segment. TimecodeStream always has a
timecode DataDefinition. TimecodeStream has a subclass TimecodeStream12M.

Segment

TimecodeStream

+SampleRate : Rational
+Source : DataValue
+SourceType : TCSource

A TimcodeStream object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:SampleRate PrefT:Rational Specifies the sample rate of the timecode data

contained in the Source property. Required.

Pref:Source PrefT:DataStream Contains the timecode data. Required

Pref:SourceType PrefT:TCSource Specifies the kind of timecode:

1 LTC timecode

2 VITC timecode

Required.

TimecodeStream specifies a stream of timecode data.

In contrast to TimecodeStream, Timecode specifies a timecode by specifying the starting timecode
value; other timecode values are calculated from the starting timecode and the time offset.

TimecodeStream is useful to store user bits that were specified in the timecode on the videotape. It is
also useful to store timecode when the timecode does not have a linear relationship with the tape, such
as when the tape was accelerating while the essence data was recorded.

174 PRELIMINARY DRAFT AAF Specification Version 1.1

TimecodeStream12M Class
TimecodeStream12M specifies a stream of timecode data in the SMPTE 12M format.

Timecode12M is a subclass of Timecode. Timecode objects always have a timecode DataDefinition and
can be used in aTimelineMob.

TimecodeStream

TimecodeStream12M

+IncludeSync : Boolean

A TimecodeStreamObject shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:IncludeSync PrefT:Boolean Specifies whether the synchronization data is included

in the timecode stream. Required.

TimecodeStream and TimecodeStream12M specify a stream of timecode data. TimecodeStream12M
conforms to the SMPTE 12M format. If the IncludeSync property has a true value, the synchronization
data is included for each frame. If the IncludeSync property is false, the synchronization data, which has
a fixed value, is omitted from the timecode stream.

In contrast to TimecodeStream, Timecode specifies a timecode by specifying the starting timecode
value; other timecode values are calculated from the starting timecode and the time offset.

TimecodeStream is useful to store user bits that were specified in the timecode on the videotape. It is
also useful to store timecode when the timecode does not have a linear relationship with the tape, such
as when the tape was accelerating while the essence data was recorded.

TimelineMobSlot Class
TimelineMobSlot describes time-varying timeline essence.

TimelineMobSlot is a subclass of MobSlot. MobSlot objects are owned by Mob objects.

AAF Specification Version 1.1 PRELIMINARY DRAFT 175

MobSlot

TimelineMobSlot

+EditRate : Rational
+Origin : Position

A TimelineMobSlot shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:EditRate PrefT:Rational Specifies the units of time for the TimelineMobSlot.

Required.

Pref:Origin PrefT:Position Specifies the offset used to resolve SourceClip
references to this TimelineMobSlot. Required.

The TimelineMobSlot specifies the edit rate for the Segment it has. The Segment specifies its length in
the edit rate set by the TimelineMobSlot. The Segment also specifies its own data kind.

Transition Class
The Transition class specifies that the two adjacent Segments should be overlapped when they are
played and the overlapped sections should be combined using the specified Effect.

The Transition class is a subclass of the Component class.

A Transition object shall be in a Sequence within a Composition Mob.

176 PRELIMINARY DRAFT AAF Specification Version 1.1

Component

Transition

+Effect : StrongReference
+CutPoint : Position

OperationGroup

A Transition object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Effect StrongReference to

OperationGroup
Has an OperationGroup that specifies the effect to be
performed during the Transition. Required.

Pref:CutPoint Position Specifies a cutpoint to use if replacing the Transition
with a cut. Required.

Note 1 A Transition object specifies that sections of the preceding and following
segments overlap for the duration of the Transition. The effect combines the essence
from the overlapping sections in some way.

Note 2 The Transition cut point has no direct effect on the results produced by a
Transition. However, the cut point provides information that is useful if an application
wishes to remove the Transition or substitute a cut when playing the Transition. The cut
point is represented as an offset from the beginning of the Transition. When removing
the Transition, an application would change the Composition Mob so that the preceding
Segment ends where the cutpoint is located, and the succeeding Segment starts at that
location. This can be done by trimming the end of the preceding Segment by an amount
equal to the Transition length minus the cut point offset, and trimming the beginning of
the succeeding Segment by an amount equal to the cut point offset.

AAF Specification Version 1.1 PRELIMINARY DRAFT 177

TypeDefinition Class
TypeDefinition defines a property type.

TypeDefinition is a subclass of DefinitionObject. Type Definition is an abstract class. Any object in an
AAF file that belongs to the TypeDefinition class shall also belong to a subclass of TypeDefinition.
TypeDefinition objects are owned by the Dictionary object.

DefinitionObject

TypeDefinition

The TypeDefinition class does not define any additional properties.

TypeDefinitionEnumeration Class
TypeDefinitionEnumeration defines a property type that can have one of a set of integer values.

TypeDefinitionEnumeration is a subclass of TypeDefinitionObject. TypeDefinitionEnumeration objects
are owned by the Dictionary object.

178 PRELIMINARY DRAFT AAF Specification Version 1.1

TypeDefinition

TypeDefinitionEnumeration

+ElementType : WeakReference
+ElementNames : StringArray
-ElementValues : UInt64Array

TypeDefinition
ElementType

A TypeDefinitionEnumeration object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference to
TypeDefinition

Specifies the TypeDefinition that defines the
underlying integer type. Required.

Pref:ElementNames PrefT:StringArray Specifies the names associated with each enumerated
value. Required.

Pref:
ElementValues

PrefT:UInt64Array Specifies the valid enumerated values. The integer
values shall be positive and each value in the array
shall be unique. Required.

TypeDefinitionExtendibleEnumeration
TypeDefinitionExtendibleEnumeration defines a property type that can have one of an extendible set of
AUID values.

AAF Specification Version 1.1 PRELIMINARY DRAFT 179

TypeDefinition

TypeDefinitionExtendibleEnumeration

+ElementNames : StringArray
+ElementValues : AUIDArray

TypeDefinition
ElementType

A TypeDefinitionEnumeration object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:ElementNames PrefT:StringArray Specifies the names associated with each enumerated

value. Required.

Pref:
ElementValues

PrefT:AUIDArray Specifies the known AUID values that can be used in
this type. Required

TypeDefinitionFixedArray Class
TypeDefinitionFixedArray defines a property type that has a fixed number values of the underlying type.
The order of the values is meaningful.

TypeDefinitionFixedArray is a subclass of TypeDefinition. TypeDefinitionFixedArray objects are owned
by the Dictionary object.

180 PRELIMINARY DRAFT AAF Specification Version 1.1

TypeDefinition

TypeDefinitionFixedArray

+ElementType : WeakReference
+ElementCount : UInt32

TypeDefinition

ElementType

A TypeDefinitionFixedArray object shall have the required properties and may have the optional
properties listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the TypeDefinition that defines the type of each
element of the array. Required.

Pref:ElementCount PrefT:UInt32 Specifies the number of elements in the array. Required.

TypeDefinitionInteger Class
TypeDefinitionInteger defines a property type that is an integer with the specified number of bytes.

TypeDefinitionInteger is a subclass of TypeDefinition. TypeDefinitionInteger objects are owned by the
Dictionary object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 181

TypeDefinitionInteger

+Size : UInt8
+IsSigned : Boolean

TypeDefinition

A TypeDefinitionInteger object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Size PrefT:UInt8 Specifies the number of bytes to store the integer. Legal

values are 1, 2, 4, and 8. Required.

Pref:IsSigned PrefT:Boolean Specifies if the integer is signed (True) or unsigned (False).
Required

TypeDefinitionRecord Class
TypeDefinitionRecord defines a property type that consists of an ordered set of fields, where each field
has a name and type.

TypeDefinitionRecord is a subclass of TypeDefinition. TypeDefinitionRecord objects are owned by the
Dictionary object.

182 PRELIMINARY DRAFT AAF Specification Version 1.1

TypeDefinitionRecord

+MemberTypes : WeakReferenceVector
+MemberNames : StringArray

TypeDefinition

TypeDefinition
1..*

MemberTypes {ordered}

A TypeDefinitionRecord object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:MemberTypes PrefT:

WeakReferenceVector
of TypeDefinition

Specifies the type of each element of the record.
Required.

Pref:MemberNames PrefT:StringArray Specifies the name of each element of the record.
Required.

TypeDefinitionRename Class
TypeDefinitionRename defines a property type that has the same structure and representation as its
underlying type but has a different meaning.

TypeDefinitionRename is a subclass of TypeDefinition. TypeDefinitionRename objects are owned by the
Dictionary object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 183

TypeDefinition

TypeDefinitionRename

+RenamedType : WeakReference

TypeDefinition
RenamedType

A TypeDefinitionRename object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:RenamedType PrefT:

WeakReference
to TypeDefinition

Specifies the underlying type. Required.

TypeDefinitionSet Class
TypeDefinitionSet defines a property type that has a variable number values of the underlying type. The
order of the values is has no meaning.

TypeDefinitionSet is a subclass of TypeDefinition. TypeDefinitionSet objects are owned by the Dictionary
object.

184 PRELIMINARY DRAFT AAF Specification Version 1.1

TypeDefinition

TypeDefinitionSet

+ElementType : WeakReference

TypeDefinition
ElementType

A TypeDefinition object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the TypeDefinition that identifies the member of
the set. Required.

TypeDefinitionStream Class
TypeDefinitionStream defines a property type that is stored in a stream and has a varying number values
of the underlying type. The order of the values is meaningful.

TypeDefinitionStream is a subclass of TypeDefinition. TypeDefinitionStream objects are owned by the
Dictionary object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 185

TypeDefinition

TypeDefinitionStream

+ElementType : WeakReference

TypeDefinition
ElementType

A TypeDefinition object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the TypeDefinition that identifies the basic data
unit of the stream. Required.

All TypeDefinitionStream types defined by this document specify the Int8 type.

TypeDefinitionString Class
TypeDefinition defines a property type that consists of a zero-terminated array of the underlying integer
type.

TypeDefinitionString is a subclass of TypeDefinition. TypeDefinitionString objects are owned by the
Dictionary object.

186 PRELIMINARY DRAFT AAF Specification Version 1.1

TypeDefinition

TypeDefinitionString

+ElementType : WeakReference

TypeDefinitionInteger
ElementType

A TypeDefinitionString object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference to
TypeDefinitionInteger

Specifies the string element size as an integer.
Optional.

TypeDefinitionStrongObjectReference Class
TypeDefinitionStrongObjectReference defines a property type that defines an object relationship where
the target of the strong reference is owned by the object with the property with the
TypeDefinitionStrongObjectReference type. An object can be the target of only one strong reference.

TypeDefinitionStrongObjectReference is a subclass of TypeDefinition.
TypeDefinitionStrongObjectReference objects are owned by the Dictionary object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 187

TypeDefinitionStrongObjectReference

+ReferencedClass : WeakReference

TypeDefinition

ClassDefinition
ReferencedClass

A TypeDefinitionStrongObjectReference object shall have the required property listed in the following
table.

Property Name Type Explanation
Pref:
ReferencedClass

PrefT:
WeakReference to
ClassDefinition

Specifies the class that the referenced object shall
belong to (the referenced object may also belong to a
subclass of the referenced class). Required.

TypeDefinitionVariableArray Class
TypeDefinitionVariableArray defines a property type that has a varying number values of the underlying
type. The order of the values is meaningful.

TypeDefinitionVariableArray is a subclass of TypeDefinition. TypeDefinitionVariableArray objects are
owned by the Dictionary object.

188 PRELIMINARY DRAFT AAF Specification Version 1.1

TypeDefinition

TypeDefinitionVariableArray

+ElementType : WeakReference

TypeDefinition
ElementType

A TypeDefinition object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the type of the element of the array. Required.

TypeDefinitionWeakObjectReference Class
TypeDefinitionWeakObjectReference defines a property type that defines an object relationship where
the target of the weak reference is referenced by the object with the property with the
TypeDefinitionWeakObjectReference type. Only objects that define a unique identification (AUID) can be
the targets of weak object references. An object can be the target of one or more than one weak
references.

TypeDefinitionWeakObjectReference is a subclass of TypeDefinition.
TypeDefinitionWeakObjectReference objects are owned by the Dictionary object.

AAF Specification Version 1.1 PRELIMINARY DRAFT 189

TypeDefinitionWeakObjectReference

+ReferencedClass : WeakReference

TypeDefinition

ClassDefinition
ReferencedClass

A TypeDefinitionWeakObjectReference object shall have the required property listed in the following
table.

Property Name Type Explanation
Pref:
ReferencedClass

PrefT:
WeakReference to
ClassDefinition

Specifies the class that the referenced object shall belong
to (the referenced object may also belong to a subclass of
the referenced class). Required.

VaryingValue Class
The VaryingValue class specifies a changing data value for an effect control argument.

The VaryingValue class is a subclass of the Parameter class.

190 PRELIMINARY DRAFT AAF Specification Version 1.1

Parameter

VaryingValue

+Interpolation : WeakReference
+PointList : StrongReferenceVector

ControlPoint
1..*

{ordered}

InterpolationDefinition

A VaryingValue object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Interpolation PrefT:WeakReference to

InterpolationDefinition
Specifies the kind of interpolation to
be used to find the value between
Control Points. Required.

Pref:PointList PrefT:
StrongReferenceVector of
ControlPoint

Has an array of Control Points, each
of which specifies a value and a time
point at which the value is defined.

Required.

1. A VaryingValue object shall have at least one Control Point. A VaryingValue object should have
at least two Control Points, one should specify a value at the time 0,0 and another should specify
a value at the time 1,0.

2. Control Points shall be ordered by their time value.

3. A Varying Value object is a Parameter that returns time-varying values that are determined by
an ordered set of Control Points. Each Control Point specifies the value for a specific time point
within the Segment. The values for time points between two Control Points are calculated by
interpolating between the two values.

AAF Specification Version 1.1 PRELIMINARY DRAFT 191

4. A Control Point that has a Time value equal to 0.0 represents the time at the beginning of the
Varying Value object; one with a time equal to 1.0 represents the time at the end of the Varying
Value object. Control Points with Time values less than 0.0 and greater than 1.0 are meaningful
but are only used to establish the interpolated values within the Varying Value object— they do
not affect values outside of the duration of the Varying Value object.

5. Since time is expressed as a rational value, any arbitrary time can be specified— the specified
time point does not need to correspond to the starting point of an edit unit.

6. If more than two Control Point objects specify the same value, the last Control Point determines
the value for the time point specified and is used to interpolate values after this time point.

7. The following equation specifies the value at time X, by using a linear interpolation and the
values specified for time A and time B.

ValueX = (TimeX – TimeA) / (TimeB - TimeA) × (ValueB – ValueA) + ValueA

8. If the first Control Point in a Varying Value object specifies a time value greater than 0, this value
is extrapolated to the 0 time point by holding the value constant. If the last Control Point in a
Varying Value object specifies a time value less than 1.0, this value is extrapolated to the 1.0
time point by holding the value constant. This extrapolation method of holding values is used if
the interpolation method specified for the Varying Value object is constant or linear interpolation.

 Note The Varying Value object specifies a value for each time point within the Varying
Value object; however if you are generating a stream of essence from the Composition
Mob owning the Varying Value object, it may be important to adjust values produced by
the Varying Value object based on sample-rate quantization. Within a essence sample
unit, there can only be a single value of the Varying Value object when generating that
sample.

WAVEDescriptor Class
The WAVEDescriptor class specifies that a File Source Mob is associated with audio content data
formatted according to the RIFF Waveform Audio File Format (WAVE).

The WAVEDescriptor class is a subclass of the FileDescriptor class.

 The WAVE audio format is a recommended audio format, but the WAVE format is not required for
compliance with this document.

A WAVEDescriptor object shall be owned by a File Source Mob.

192 PRELIMINARY DRAFT AAF Specification Version 1.1

FileDescriptor

WAVEDescriptor

+Summary : DataValue

An WAVEDescriptor object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Summary PrefT:DataValue A copy of the WAVE file information without

the sample data. Required.

A WAVE Audio Descriptor describes a WAVE object contains digitized audio data in the little-endian byte
ordering (used on the Intel architecture). It contains data formatted according to the Microsoft/IBM
Multimedia Programming Interface and Data Specifications, Version 1.0, but limited to the section
describing the RIFF Waveform Audio File Format audio data. The WAVE file information (without the
sample data) is duplicated in the WAVE Audio Descriptor Summary property to make it more efficient to
access this information.

AAF Specification Version 1.1 PRELIMINARY DRAFT 193

Appendix B Data types
This document defines two sets of types: the data type and the data definition. The data type specifies
the type of property values and of parameters. The data definition specifies the type for objects in the
Component class. Annex A lists the data type of each property in each class. Objects that belong either
to the class Component have a property that identifies the data definition of the object. Data definition is
used to identify the basic types of essence produced by Components.

The data type is identified by a globally unique integer. Table B-1 lists the data types identified by the
name.

The data definition is identified by a globally unique integer. Table B-2 lists the data kinds identified by
the name.

Table B-1 – Data Types

Data Type Explanation

PrefT:AUID 128-bit unique integer identifier which is a SMPTE Universal Label
conforming to SMPTE 298M-1997 or another 128-bit unique
identifier

PrefT:AUIDArray Array of 128-bit unique integer identifiers

PrefT:Boolean Specifies either True or False.

PrefT:Char Specifies a single character value.

PrefT:ColorSitingType Specifies how to compute subsampled values as a 16-bit
enumerated type. Values are

194 PRELIMINARY DRAFT AAF Specification Version 1.1

Table B-1 – Data Types

Data Type Explanation

0 coSiting To calculate subsampled pixels, take the
preceding pixel’s color value, discard the other
color values, and cosite the color with the first
luminance value.

1 averaging To calculate subsampled pixels, take the average
of the two adjacent pixel’s color values, and site
the color in the center of the luminance pixels.

2 threeTap To calculate subsampled pixels, take 25 percent
of the previous pixel’s color value, 50 percent of
the first value, and 25 percent of the second
value. For the first value in a row, use 75 percent
of that value since there is no previous value.
The threeTap value is only meaningful when the
HorizontalSubsampling property has a value of 2.

PrefT:CompCodeArray Specifies the order in which the RGBA components are stored as an
array of character. Each element in the array represents a different
color component. The array can contain the following characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
‘P’ Palette code
‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear no more than one time in the
array. The array is terminated by a 0 byte and has a maximum of 8
elements (including the terminating byte). Note that a byte with the
ASCII ‘0’ indicates no component and a byte with a 0 (ASCII NULL)
terminates the string.

PrefT:CompSizeArray Specifies the number of bits reserved for each component as an
array of UInt8 in the order specified in the CompCodeArray. The
array is terminated by a 0 byte and has a maximum of 8 elements
(including the terminating byte).

PrefT:DataValue Specifies essence or a block of data whose type is specified by a
data kind.

PrefT:EdgeType Specifies the kind of film edge code as an enumerated Int16. Values
are:

0 ET_NULL Invalid edge code

1 ET_KEYCODE Eastman Kodak KEYKODE TM format.

2 ET_EDGENUM4 edge code format: nnnn+nn.

3 ET_EDGENUM5 edge code format: nnnnn+nn.

PrefT:EditHintType Specifies hints to be used when editing Control Points. Values are:

AAF Specification Version 1.1 PRELIMINARY DRAFT 195

Table B-1 – Data Types

Data Type Explanation

0 EH_Proportional

1 EH_RelativeLeft

2 EH_RelativeRight

PrefT:FadeType Specifies the type of the audio fade; may have one of the following
values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade types may be defined.

PrefT:FilmType Specifies the format of the film. as an Int16 enumerated value.
Values are:

0 FT_NULL invalid film type

1 FT_35MM 35 millimeter film

2 FT_16MM 16 millimeter film

3 FT_8MM 8 millimeter film

4 FT_65MM 65 millimeter film

PrefT:Int8 Specifies an 8-bit 2's complement integer value.

PrefT:Int8Array Specifies an array of Int8 values.

PrefT:Int16 Specifies a 16-bit 2's complement integer value.

PrefT:Int16Array Specifies an array of Int16 values.

PrefT:Int32 Specifies a 32-bit 2's complement integer value.

PrefT:Int32Array Specifies an array of Int32 values.

PrefT:Int64 Specifies a 64-bit 2's complement integer value.

PrefT:Int64Array Specifies an array Int64 values.

PrefT:JPEGTableIDType Specifies the JPEG tables used in compressing TIFF data.

PrefT:LayoutType Describes whether all data for a complete sample is in one frame or
is split into more than one field as an enumerated Int16. Values are:

0 FULL_FRAME: frame consists of a full sample in progressive scan
lines

1 SEPARATE_FIELDS: sample consists of two fields, which when
interlaced produce a full sample

2 SINGLE_FIELD: sample consists of two interlaced fields, but only

196 PRELIMINARY DRAFT AAF Specification Version 1.1

Table B-1 – Data Types

Data Type Explanation

one field is stored in the data stream
3 MIXED_FIELDS

PrefT:Length Specifies the length of a Component with an UInt64.

PrefT:PixelRectangle Specifies of Rectangle in pixels. Is Record with the following
elements:

 Horizontal: UInt 16

 Vertical: UInt16

PrefT:Position Specifies an offset into a Component with an Int64.

PrefT:ProductVersion Specifies the version number of an application. Consists of 5 Uint16
integer values. The first four integers specify the major, minor,
tertiary, and patch version numbers. The fifth integer has the
following values:

0 kVersionUnknown No additional version information

1 kVersionReleased Released product

2 kVersionDebug Development version

3 kVersionPathched Released version with patches

4 kVersionBeta Prerelease beta test version

5 kVersionPrivateBuild Version not intended for general release

PrefT:PulldownKindType Specifies whether the Pulldown object is converting from NTSC or
PAL video and whether frames are dropped or the video is played at
another speed. Values are:

0 kTwoThreePD Converting between NTSC and film by
dropping or adding frames

1 kPalPD Converting between PAL and film by dropping or
adding frames

2 kOneToOneNTSC Converting between NTSC and film
by speeding up or slowing down the frame rate.

3 kOneToOnePAL Converting between PAL and film by
speeding up or slowing down the frame rate.

4 kVideoTapNTSC Converting between NTSC and film
by recording original film and video sources simultaneously.

AAF Specification Version 1.1 PRELIMINARY DRAFT 197

Table B-1 – Data Types

Data Type Explanation

PrefT:
PulldownDirectionType

Specifies whether the Pulldown object is converting from tape to film
speed or from film to tape speed. Values are:

0 kVideoToFilmSpeed The InputSegment is at video speed
and the Mob track owning the Pulldown object is at film speed.

1 kFilmToVideoSpeed The InputSegment is at film speed
and the Mob track owning the Pulldown object is at video speed.

PrefT:PhaseFrameType Specifies the phase within the repeating pulldown pattern of the first
frame after the pulldown conversion. A value of 0 specifies that the
Pulldown object starts at the beginning of the pulldown pattern.

PrefT:Rational Specifies a rational number by means of an Int32 numerator and an
Int32 denominator.

PrefT:
RationalRectangle

Specifies an area within an image with 4 rationals, where the first two
rationals specify the horizontal and vertical position of the upper-left
corner of the rectangle and the last two rationals specify the
horizontal and vertical position of the lower-right corner. The position
of the center of the image is defined as (0/1, 0/1) (rounding up and to
the left); the upper left pixel of the image is (-1/1, -1/1); and the
lower-right pixel of the image is (1/1, 1/1).

PrefT:String Specifies a string of Unicode characters.

PrefT:StrongRef Specifies an owned object, which is logically contained by the owning
object..

PrefT:StrongReferenceV
ector

Specifies an ordered set of owned objects.

PrefT:StrongReferenceS
et

Specifies an unordered set of owned objects.

PrefT:TapeCaseType Describes the physical size of the tape; may have one of the
following values:

0 3/4 inch videotape
1 VHS video tape
2 8mm videotape
3 Betacam videotape
4 Compact cassette
5 DAT cartridge
6 Professional audio tape

198 PRELIMINARY DRAFT AAF Specification Version 1.1

Table B-1 – Data Types

Data Type Explanation

PrefT:TapeFormatType Describes the format of the tape; may have one of the following
values:

0 Betacam
1 BetacamSP
2 VHS
3 S-VHS
4 8mm
5 Hi8

PrefT:TCSource Specifies the kind of timecode; may have one of the following
values:

 1 LTC timecode

 2 VITC timecode

PrefT:TimeStamp Specifies a date and Universal Time Code using the following
structure:

 Type TimeStamp Record {
 Type Date Record {
 Type Year Int16
 Type Month UInt8
 Type Day UInt8
 }
 Type Time Record {
 Type Hour UInt8
 Type Minute UInt8
 Type Second UInt8
 Type Fraction UInt8
 }
}
Where Fraction is expressed in 1/100 of a second.

PrefT:UInt8 Specifies an unsigned 8-bit integer value.

PrefT:UInt8Array Specifies an array of unsigned 8-bit integer value.

PrefT:UInt16 Specifies an unsigned 16-bit integer value.

PrefT:UInt16Array Specifies an array of unsigned 16-bit integer value.

PrefT:UInt32 Specifies an unsigned 32-bit integer value.

PrefT:UInt32Array Specifies an array of unsigned 64-bit integer values.

PrefT:UInt64 Specifies an unsigned 64-bit integer value.

PrefT:UInt64Array Specifies an array of 32-bit integer values.

PrefT:VersionType Specifies a 2-byte unsigned version number.

AAF Specification Version 1.1 PRELIMINARY DRAFT 199

Table B-1 – Data Types

Data Type Explanation

PrefT:VideoSignalType Specifies the type of video signal on the videotape. Values are:

0 NTSC
1 PAL
2 SECAM

PrefT:WeakRef Reference to an object that defines a unique identifier

PrefT:WeakReferenceVec
tor

Reference to an ordered set of objects where each referenced object
defines a unique identifier

PrefT:WeakReferenceSet Reference to an unordered set of objects where each referenced
object defines a unique identifier.

200 PRELIMINARY DRAFT AAF Specification Version 1.1

Table B-2 – Data Definitions

Data Kind Explanation

PrefT:Edgecode Specifies a stream of film edge code values.

PrefT:Matte Specifies a stream of essence that contains an image of alpha
values.

PrefT:Picture Specifies a stream of essence that contains image data.

PrefT:PictureWithMatte Specifies a stream of essence that contains image data and a
matte.

PrefT:Sound Specifies a stream of essence that contains a single channel of
sound.

PrefT:Timecode Specifies a stream of tape timecode values.

AAF Specification Version 1.1 PRELIMINARY DRAFT 201

Appendix C Conventions
The following documentation conventions are used in the diagrams in this document.

202 PRELIMINARY DRAFT AAF Specification Version 1.1

Class diagramComponent Component

+DataDefinition : RefAUID
+Length : Length

Class diagram
with properties

InterchangeObject

Component

+DataDefinition : RefAUID
+Length : Length

Class diagram
showing
inheritance

superclass

subclass

Component

Italics indicate
abstract class

Transition

concrete class

abstract class

Property Name Type
DataDefinition RefAUID
Length Length

Mob

+MobID : AUID
+Name : String
+Slots : ObjRefArray
+LastModified : TimeStamp
+CreationTime : TimeStamp
+MobComments : ObjRefArray

MobSlot1..*

{ordered}

Class diagram showing
containment

contained object

1..* specifies that the Mob can contain
between 1 and any number of MobSlots
{ordered} specifies that the order of the
contained objects is meaningful

Transition

Transition

underline
indicate
instance

instance

class

Component

+DataDefinition : RefAUID
+Length : Length

DataDefinition

Class diagram showing
reference by AUID

referenced object

AAF Specification Version 1.1 PRELIMINARY DRAFT 203

Appendix D: Terms and Definitions
abstract class

class that is not sufficient to define an object; an object must also belong to a subclass of the abstract
class
audio

audio essence

sound in transmitted or stored in any form, including sound stored on analog tape, analog sound
broadcast on radio waves, sound transmitted through air, and sound stored in a digital format on tape or
disk
AUID

unique identifier which is a SMPTE Universal Label conforming to SMPTE 298M-1997 or another 128-bit
unique identifier
big-endian

byte order in which the most-significant byte is stored first (at the address specified, which is the lowest
address of the series of bytes that constitute the value); bytes are stored with the most-significant bit first
byte order

convention used to stored multibyte numeric values on a platform
class

category of objects, which have common properties, relationships, and semantics
class dictionary

structure in a file that defines the class hierarchy for classes not specified in this document
class hierarchy

specification to the subclass and superclass relationship among a set of classes

204 PRELIMINARY DRAFT AAF Specification Version 1.1

component

basic object that defines essence in a mob slot
composition mob

metadata object that specifies association and composition metadata that describe how to combine and
modify content elements and content items to produce a content package
composition metadata

metadata that describes how to combine essence in a sequence and to modify essence
content

program material and related information of any variety
data definition

structure that determines the basic kind of data produced by a component
data type

structure that determines the kind of value that can be stored in a property
derivation metadata

metadata that describes the source that provides the values of an object
descriptive metadata

metadata that provides additional information
edgecode

codes that are marked on film to facilitate the location of specific frames
edit rate

rational number that specifies the units used to specify the duration of components in a mob slot; the edit
rate is the number of units that equal one second in clock time
edit unit

unit in which the integer length of components in a mob slot are specified
essence

parts of content that directly represent program material, such as audio, video, graphic, still-image, text,
or other sensor data
essential metadata

metadata that describes that is required to decode the essence
file source mob

metadata object that describes an essence component stored in a digital form in a file
Effect

segment that combines or modifies one or more input segments according to the specified effect
definition and controls parameters
header

root object of the file that has the mobs and EssenceData objects in the file and defines extensions to the
classes used to store objects in the file

AAF Specification Version 1.1 PRELIMINARY DRAFT 205

inheritance

mechanism that defines a relationship between classes where a subclass inherits the properties,
relationships, and semantics of its superclass
interleaved channels

storage format that combines two or more channels of audio data or video data into a single stream
little-endian

byte order in which the least-significant byte is stored first (at the address specified, which is the lowest
address of the series of bytes that constitute the value); bytes are stored with the most-significant bit first
master mob

metadata object that specifies association and derivation metadata; it provides a level of indirection
between a composition mob and a file source mob and synchronizes file source mobs
metadata

parts of content which data that is used to describe essence or provide information on how to use the
essence
metadata object (mob)

structure that has a globally unique identity and describes essence
mob

an abbreviated form of metadata object
mobID

value that defines the unique identification of a mob
mob slot

object in a mob that describes essence and is externally accessible
object

collection of properties, each of which has a name, a type, and a value
ordered set

ordered collection of unique values
physical source mob

mob that describes physical media
property

element in a file that has a name, type, and value
property name

property type name

text name that identifies a data type
property value

data that stored in a property, which is in an object

206 PRELIMINARY DRAFT AAF Specification Version 1.1

rational number

numeric value expressed by an integer numerator and an integer denominator that specifies a numeric
value that can have a fractional part
relational metadata

metadata that describes how to synchronize or interleave essence
sample rate

rational number that specify the number of samples of essence that are played in one second
segment

component that has well defined boundaries; a segment can be used without any other components in
contrast to a transition, which can only be used in a sequence and need to be surrounded by segments
sequence

sequence that has an ordered set of components and causes them to be arranged in a sequential order
set

unordered collection of unique values
edit interchange file

storage wrapper data file that stores essence and metadata in objects that conforms to this document
source clip

segment that specifies essence by referencing a mob slot in a mob
source mob

metadata object that describes an essence component stored either in a digital form or on a physical
media source
static metadata

metadata that describes the edit interchange file as a whole
storage wrapper

persistent storage mechanism for the storage of complex content
NOTE This mechanism allows descriptive information to be stored with the data in such a way
that it is possible to query the wrapper file to find out the format of the data and then to use that
information to read and interpret the encapsulated data.
strong reference

relationship between objects where one object is the owner of another object. An object can be owned
only by a single object at one time. A strong reference defines a logical containment, where the owning
object logical contains the owned object.
subclass

class that is defined as having the properties, relationships and semantics as another class, which is
called its superclass, and may have additional properties, relationships, and semantics that are not
present in the superclass
superclass

class that has another class as its subclass

AAF Specification Version 1.1 PRELIMINARY DRAFT 207

timecode

codes that are written on videotape and audiotape to facilitate the location of a point on the tape
transition

component which causes the segment that precedes it in the sequence to be overlapped in time with the
segment that follows it in the sequence
variant metadata

metadata that describes an element or subsection within an edit interchange file
weak reference

relation between objects where one object has a reference to a second object; the second object is
identified by an AUID. In contrast with a strong reference, a weak reference specifies an association
relationship but does not specify ownership. An object can be the target of weak references from more
than one object.

