
AAF Object Manager Design
Specification

Avid Technology

Revision 1.6

Author: Tim Bingham

June 4, 2001

Avid Technology

AAF Object Manager Design Specification Page 2
June 4, 2001 Avid Technology 1.1

Contents
1. Introduction___9

2. Design Overview ___9

3. Summary of Requirements__9
3.1 Direct Support of the AAF Object Model...9
3.2 Persisting Objects and Object References..9
3.3 Transparent Access to Persistent Objects..9
3.4 Implicit Saving of Individual Objects..9
3.5 Explicit Saving of AAF Files..9
3.6 Referential Integrity..9
3.7 Incremental File Access (Lazy Loading)...10
3.8 File Integrity...10
3.9 Multiple Open AAF Files...10
3.10 Lazy Loading..10
3.11 Transient Objects...10
3.12 Object Extensibility...10
3.13 Optional Properties..10
3.14 Edit in Place...10
3.15 Application Object Creation Model...11
3.16 Forward Compatibility...11
3.17 Backward Compatibility...11
3.18 Structural Checking..11
3.19 AAF File Byte Order..11
3.20 AAF Files Contain Only AAF Objects..11
3.21 AAF Files And Objects Are Not Embeddable...11
3.22 Internal Interfaces To The Object Manager..11
3.23 External Interfaces To The Object Manager...11
3.24 Admissibility Of Alternative Implementations Of AAF..12
3.25 File Size..12
3.26 Extensible Types...12
3.27 Canonical Types..12
3.28 Performance and Scalability...12
3.29 Media Data...12
3.30 Portability..12
3.31 Client Specified Unique Identifiers..12
3.32 Other Requirements..13

4. Overview of Structured Storage___13

5. Design Principles__13

6. Class Interfaces ___13
6.1 Defining and Accessing Properties..13

6.1.1 Framework...13
6.1.2 Property Declaration..14
6.1.3 Property Access..14
6.1.4 Property and Property Set Initialization...14

6.2 Saving and Restoring Property Values...15
6.3 Persistent Property Class Hierarchy...15
6.4 Creating Object Instances..15

6.4.1 Creating Objects and Meta Data Objects..16
6.5 Type-specific Byte Reordering, Internalization and Externalization..18

AAF Object Manager Design Specification Page 3
June 4, 2001 Avid Technology 1.1

6.5.1 Definition of OMType...18
6.5.2 Reading and Writing Values Described by OMType ..19

7. Property Types___19
7.1 Structural Types..19
7.2 Primitive Types...20
7.3 Compositional Types...20
7.4 Composed Types...20

7.4.1 Types Not Specific To AAF..20
7.4.2 Types Specific To AAF..20

7.5 Summary Of Property Types..20
7.6 How Types Are Composed..21
7.7 Mapping Of Types To Structured Storage...21
7.8 Indirect, private, encrypted, opaque and KLV types...22

7.8.1 Design proposal..22
7.8.1.1 DataValue...22

7.8.1.1.1 DataValues Representing a “stream"...22
7.8.1.1.2 Data Values Representing "array of bytes"...22
7.8.1.1.3 DataValues representing "void *"...22

7.8.1.2 "private types"...23
7.8.1.3 "encrypted types"...23
7.8.1.4 "SMPTE KLV types"...23
7.8.1.5 AAFTypeDefOpaque..23

7.9 Name Equivalence..23

8. Object Manager Design___25
8.1 Object Manager Interfaces...25

8.1.1 Interfaces to Support the Tool Kit Implementation..25
8.1.1.1 Definition Classes..25
8.1.1.2 Equivalence of Predefined and User Defined AAF Classes...25

8.1.1.2.1 Class Definition...26
8.1.1.2.2 Property Definition...26

8.1.1.3 Property Access...26
8.1.1.4 Media Stream Access..26
8.1.1.5 Media Stream Access Functions...26

8.1.2 Interfaces Used By The Object Manager..26
8.1.2.1 Structured Storage..26

8.2 File Level Operations...26
8.2.1 Semantics of AAFFile::Save() and AAFFile::Close()...27
8.2.2 File Mode Flags...27

8.3 Persistence Infrastructure...28
8.3.1 Persistence Rules by Type..28

8.3.1.1 Property Values...28
8.3.1.1.1 Ordinary Property Data..28
8.3.1.1.2 Media Data..28

8.3.1.2 Object References...28
8.3.1.2.1 Strong Object References..28
8.3.1.2.2 Strong Object Reference Vectors..29
8.3.1.2.3 Strong Object Reference Sets..29
8.3.1.2.4 Weak Object References...29
8.3.1.2.5 Weak Object Reference Vectors..29
8.3.1.2.6 Weak Object Reference Sets..29

8.3.1.3 Non-Persistent Data..29
8.3.2 How Save Works..29
8.3.3 Saving a Single Object...29
8.3.4 How Restore Works...30
8.3.5 Restoring a Single Object...30
8.3.6 Persisting References...30

AAF Object Manager Design Specification Page 4
June 4, 2001 Avid Technology 1.1

8.3.6.1 Isomorphism...30
8.3.6.2 Circular References...31
8.3.6.3 Null References...31

8.4 Optional Properties..31
8.4.1 Data Manager View of Optional Properties...31

8.4.1.1 OMProperty Routines...31
8.4.1.2 Routine semantics..31
8.4.1.3 Validity Constraints...32
8.4.1.4 Declaring an Optional Property...32
8.4.1.5 Accessing an Optional Property..32
8.4.1.6 Removing a Simple Optional Property..33
8.4.1.7 Removing Optional Containment...33
8.4.1.8 On-Disk Implications...33

8.4.2 Validation..33
8.4.3 Internals..33
8.4.4 Dictionary..34

8.5 Mapping of AAF Objects to Structured Storage...34
8.5.1 Details of Mapping..34
8.5.2 Examples...36

8.5.2.1 An Instance of AAFSequence...36
8.5.2.2 Example Dump...37
8.5.2.3 Example Dump of a Set Index..37
8.5.2.4 [Other Examples TBS.]...37

8.5.3 Data Structures...37
8.5.3.1 Integral Types...37
8.5.3.2 Property Index...37

8.5.3.2.1 Purpose...37
8.5.3.2.2 External representation...38
8.5.3.2.3 Structure of Property Index Header...38
8.5.3.2.4 Structure of a Property Index Entry..38

8.5.3.3 Strong Object Reference..38
8.5.3.3.1 Purpose...38
8.5.3.3.2 External Representation..38
8.5.3.3.3 Structure of a Strong Object Reference..39

8.5.3.4 Strong Object Reference Vector..39
8.5.3.4.1 Purpose...39
8.5.3.4.2 External Representation..39
8.5.3.4.3 Structure of a Strong Object Reference Vector Index Header..39
8.5.3.4.4 Structure of a Strong Object Reference Vector Index Entry..39

8.5.3.5 Strong Object Reference Sets...39
8.5.3.5.1 Purpose...39
8.5.3.5.2 External Representation..39
8.5.3.5.3 Structure of a Strong Object Reference Set Index Header..40
8.5.3.5.4 Structure of a Strong Object Reference Set Index Entry..40

8.5.3.6 Weak Object Reference..40
8.5.3.6.1 Purpose...40
8.5.3.6.2 External representation...40
8.5.3.6.3 Structure of a Weak Object Reference..40

8.5.3.7 Weak Object Reference Vector..41
8.5.3.7.1 Purpose...41
8.5.3.7.2 External representation...41
8.5.3.7.3 Structure of a Weak Reference Vector Index Header...41
8.5.3.7.4 Structure of a Weak Object Reference Vector Index Entry...41

8.5.3.8 Weak Object Reference Set..41
8.5.3.8.1 Purpose...41
8.5.3.8.2 External Representation..41
8.5.3.8.3 Structure of a Weak Object Reference Set Index Header..41
8.5.3.8.4 Structure of a Weak Object Reference Set Index Entry..42

AAF Object Manager Design Specification Page 5
June 4, 2001 Avid Technology 1.1

8.5.3.9 Stored Object Identification...42
8.5.3.9.1 Purpose...42
8.5.3.9.2 External representation...42

8.5.3.10 Unique Object Identification...42
8.5.3.10.1 Purpose...42
8.5.3.10.2 External Representation..42

8.5.3.11 Opaque Stream...42
8.5.3.11.1 Purpose...42
8.5.3.11.2 External Representation..42

8.5.4 The Referenced-Properties Table...42
8.5.4.1 The Referenced-Properties Table Header...43
8.5.4.2 The Referenced-Properties Table String Space...43
8.5.4.3 The Referenced-Properties Table Validity constraints..43
8.5.4.4 Scalability of the Referenced-Properties Table...43

8.5.5 General Design Principles...43
8.5.6 Extra Design Flexibility...44

8.5.6.1 Per-Object Byte Order...44
8.5.6.2 Per-Object Format Version..44

8.5.7 Meta-data Byte Order...44
8.5.8 Storage Overhead..44

8.5.8.1 General storage overhead...44
8.5.8.2 Storage overhead for each property category..45
8.5.8.3 Some formulas..45
8.5.8.4 Storage Optimizations..45

8.5.9 Property Ids...46
8.5.10 Stored Class Ids..46

8.5.10.1 Example...47
8.5.11 Code class ids vs. Stored class ids...47

8.5.11.1 Requirements and motivation...47
8.5.11.2 Consequences..48

8.5.11.2.1 Stored class ids...48
8.5.11.2.2 Code class ids..48

8.5.11.3 Design Details...48
8.5.11.3.1 Stored Format Design Details..48
8.5.11.3.2 Reference Implementation Code Design Details..48

8.5.11.4 Design Discussion..48
8.5.11.4.1 Putting the stored class id where the code class id should go...48
8.5.11.4.2 Is This the Usual COM Practice?...48

8.5.11.5 Design Alternatives...49
8.5.11.5.1 Use an Explicit Property for the Stored Object Id..49
8.5.11.5.2 Use a File Local Identifier...49

8.5.12 Canonical Forms...49
8.5.13 Garbage Collection..49
8.5.14 Using This Mapping to Implement IPersistStorage..50
8.5.15 Storage and Stream Names..50
8.5.16 Storage of Object References and Object Reference Arrays...50

8.5.16.1 Strong References...51
8.5.16.2 Restricted Weak References..51

8.5.16.2.1 Restricted Weak References in the AAF Object Model...51
8.5.16.2.2 Representation of Restricted Weak References...51
8.5.16.2.3 Implementation of Restricted Weak References...51

8.5.16.3 General Weak References..51
8.5.17 Standard Streams..51
8.5.18 Class Dictionary...51
8.5.19 Embedded Media..52
8.5.20 Use Of Property Sets...52
8.5.21 AAF File SMPTE Signature...52

8.6 Object Naming..52

AAF Object Manager Design Specification Page 6
June 4, 2001 Avid Technology 1.1

8.7 Lazy Loading and Memory Reclamation..53
8.7.1 Lazy Loading...53
8.7.2 Memory Reclamation...53

8.8 Transient Objects...53
8.8.1 Rules for Combining Transient and Persistent Objects...53
8.8.2 How These Rules Are Implemented..54

8.9 Deleting Objects From an AAF File..54
8.10 Copying Objects From One AAF File to Another..54
8.11 Moving Objects From One AAF File to Another...54
8.12 COM Reference Counting...54
8.13 Object Directory..55
8.14 Schema Evolution..55
8.15 Multiple Open AAF Files...55
8.16 Shared Access to AAF Files..55
8.17 Class Dictionary..55
8.18 Object Lifetimes..56
8.19 Media Streaming...56
8.20 Handling Failures..56

8.20.1 Out of Disk Space...56
8.20.2 Out of Free Store..56

8.21 Testing..56
8.22 Debugging..56
8.23 Assertions..56

8.23.1 Overview Of Assertions..56
8.23.1.1 Simple Assertions..56
8.23.1.2 Routine Preconditions...56
8.23.1.3 Routine Postconditions...56
8.23.1.4 Routine Tracing...56

8.23.2 Assertion Violation Backstop..57
8.23.2.1 Overview..57
8.23.2.2 Example Dodo Generated Code...57

9. Notes for Developers of Object Manager Client Code _____________________________57
9.1 Cookbook for making Properties Persistent..57

9.1.1 Recipe (for the developer)...58
9.1.1.1 Use property declaration templates..58
9.1.1.2 Define property ids...59
9.1.1.3 Initialize the Properties...59
9.1.1.4 Initialize the Property Set (_persistentProperties)...59

9.1.2 Recipe (for the dodo tool)...59
9.1.2.1 Include the Appropriate Header Files...59
9.1.2.2 Declare the Class to be Storable..59
9.1.2.3 Define OMStorable Overrides...60

9.1.3 COM Reference Counting...60
9.1.3.1 An Example..60

9.1.3.1.1 Class Declaration..60
9.1.3.1.2 Class Definition...61

9.1.4 Notes..62
9.2 Changing Property Types..62
9.3 Persistent Objects, Attached Objects And Files...63

9.3.1 Determining if an Object is Owned by Another Object...63
9.3.2 Determining If An Object Is Contained Within A File...64
9.3.3 Determining if an Object is Persistent...64
9.3.4 Summary...64
9.3.5 Notes..65

10. Performance, Capacity and Scalability Tests___________________________________65
10.1 Object capacity..65

AAF Object Manager Design Specification Page 7
June 4, 2001 Avid Technology 1.1

10.1.1 purpose of test..65
10.1.2 ideal behavior...65
10.1.3 expected behavior..65
10.1.4 planned optimization...65
10.1.5 program...65
10.1.6 input data..65
10.1.7 graph..65

10.2 File open latency...65
10.2.1 purpose of test..65
10.2.2 ideal behavior...65
10.2.3 expected behavior..65
10.2.4 planned optimization...65
10.2.5 program...65
10.2.6 input data..65
10.2.7 graph..66

10.3 File save latency (create)..66
10.3.1 purpose of test..66
10.3.2 ideal behavior...66
10.3.3 expected behavior..66
10.3.4 planned optimization...66
10.3.5 program...66
10.3.6 input data..66
10.3.7 graph..66

10.4 File save latency (modify)...66
10.4.1 purpose of test..66
10.4.2 ideal behavior...66
10.4.3 expected behavior..66
10.4.4 planned optimization...66
10.4.5 program...66
10.4.6 input data..66
10.4.7 graph..66

10.5 Vector/set scalability..66
10.5.1 purpose of test..66
10.5.2 ideal behavior...67
10.5.3 expected behavior..67
10.5.4 planned optimization...67
10.5.5 program...67
10.5.6 input data..67
10.5.7 graph..67

10.6 Essence access (write)...67
10.6.1 purpose of test..67
10.6.2 ideal behavior...67
10.6.3 expected behavior..67
10.6.4 planned optimization...67
10.6.5 program...67
10.6.6 input data..67
10.6.7 graph..67

10.7 Essence access (write)...67
10.7.1 purpose of test..67
10.7.2 ideal behavior...67
10.7.3 expected behavior..68
10.7.4 planned optimization...68
10.7.5 program...68
10.7.6 input data..68
10.7.7 graph..68

11. Implementation Order __68

12. Glossary__69

AAF Object Manager Design Specification Page 8
June 4, 2001 Avid Technology 1.1

13. References__70
13.1 General References...70
13.2 COM and Structured Storage...70
13.3 Object Oriented Software Engineering..71
13.4 Object Databases..71
13.5 Design Patterns...71
13.6 Program Portability, Data Representation And Data Exchange..71
13.7 Data Structures..71

14. Revision History ___73

AAF Object Manager Design Specification Page 9
June 4, 2001 Avid Technology 1.1

1. Introduction

This document describes the design of the Object Manager component of the AAF software development kit.

2. Design Overview

The design treats an AAF file as a persistent object store. Persisted objects reside in a structured storage file. Once
an AAF file has been opened, clients may access objects without having to be concerned about that file. Transient
objects, not associated with any persistent store, may also be created. Transparent access to both persistent and
transient objects is provided.

3. Summary of Requirements

The following sections summarize the currently known requirements placed on the Object Manager. These
requirements are presented in no particular order.

3.1 Direct Support of the AAF Object Model
The Object Manager will directly support the AAF object model.

3.2 Persisting Objects and Object References
The Object Manager will provide isomorphic persistence of objects and their interrelationships. The persistence
mechanism will properly handle circular and null references. The Object Manager will support persistence of the
following kinds of object reference…

• Strong object reference – containment of one object by another object

• Strong object reference vector – containment of an ordered sequence of objects by another object

• Strong object reference set – containment of an unordered sequence of objects by another object

• Weak object reference - a reference to an object

• Weak object reference vector – an ordered sequence of references to objects

• Weak object reference set – an unordered sequence of references to objects

3.3 Transparent Access to Persistent Objects
The Object Manager will allow and require persistent objects to be accessed in exactly the same way as transient
objects. In particular no explicit call will be needed to write an object to persistent store.

3.4 Implicit Saving of Individual Objects
The Object Manager will support implicit saving of modified objects to persistent store. This is a consequence of
transparent access to persistent objects.

3.5 Explicit Saving of AAF Files
The Object Manager will support explicit saving of all modified objects associated with a given AAF file. Note
that this requirement does not conflict with the requirement for transparent access to persistent objects since this
requirement applies to a set of objects and not to a particular object.

3.6 Referential Integrity
In a valid AAF file all object references will be valid. A valid object reference is one that refers to an AAF object.

AAF Object Manager Design Specification Page 10
June 4, 2001 Avid Technology 1.1

One form of an invalid object reference would be a dangling reference. A dangling reference is an object reference
that was once valid but that has become invalid because the object to which it once referred has been deleted from
the AAF file. Note that a null reference is not invalid. It is, however, an error to attempt to follow a null reference.

Because access to persistent objects is transparent this requirement also applies to an in-memory graph of AAF
objects, persisted in an AAF file. Although in this case the requirement holds only at stable times. That is, the
requirement holds between, and not during updates. The graph is stable before and after an update. A client
application may only interrogate the graph of AAF objects at stable times and so can only see a stable graph.

3.7 Incremental File Access (Lazy Loading)
The Object Manager will support incremental access to an AAF file. To phrase this requirement in the negative -
the Object Manager will not have to read an entire AAF file in order to access individual objects. Such incremental
or lazy loading applies both at the object and at the property level. That is, object are not loaded into memory until
they are referenced and even then the properties are not loaded until they in turn are referenced

3.8 File Integrity
The Object Manager will detect and robustly handle all structural errors in an AAF file that it opens for reading.
The Object Manager will write only structurally valid AAF files.

3.9 Multiple Open AAF Files
The Object Manager will support an application having more than one AAF file open at the same time.

3.10 Lazy Loading
The Object Manager will support lazy loading of objects. An object will not be loaded until it is referenced, and,
even then, objects referenced by the loaded object will not be loaded until they themselves are referenced. Lazy
loading is optional and can be enabled or disabled dynamically on a per-AAF file basis.

3.11 Transient Objects
The Object Manager will support transient objects. A transient object exists independently of any AAF file. The
state of a transient object is not saved to an AAF file. A given object is either persistent or transient. The Object
Manager will define and enforce the rules for combining transient and persistent objects.

3.12 Object Extensibility
The Object Manager will support a hierarchy of classes, descended from a common ancestor AAFObject that is
extensible in the following ways

• the definition of new classes

• the definition of new properties

• the definition of new property types

• the addition of optional properties to existing classes

• the definition of new classes with new behavior

The AAF class hierarchy is extensible but extensions are constrained to those described in the AAF Dictionary.
Note that it is not possible to override the behavior of predefined classes.

3.13 Optional Properties
The Object Manager will support classes with optional properties. An optional property may or may not be present
on individual instances of the class. The property definition must, however, be part of the definition of the class.

3.14 Edit in Place
The Object Manager will support edit in place. “Edit in place,” means the modification of a portion of an AAF file
without having to read or rewrite the entire file.

AAF Object Manager Design Specification Page 11
June 4, 2001 Avid Technology 1.1

3.15 Application Object Creation Model
The Object Manager will support an application object creation model with the following characteristics. This is
referred to as “bottom up creation”. That is, the application first creates an object and then later attaches that object
to its containing object.

1. The Object Manager will allow client applications to specify the file with which a given persistent object is
associated.

2. The Object Manager will ensure that objects from different files are not combined.

3. The Object Manager will allow client applications to specify that a given object be persistent or transient.

4. The Object Manager will ensure that persistent and transient objects are not combined inappropriately.

3.16 Forward Compatibility
Newer versions of the Object Manager must be able to read and reasonably process, files created by older versions.

3.17 Backward Compatibility
Newer versions of the Object Manager must write files that can still be processed reasonably by older versions.

3.18 Structural Checking
The Object Manager is responsible for checking and maintaining the structural integrity of an AAF file. The Object
Manager is not responsible for checking and maintaining the correct semantics of an AAF file.

3.19 AAF File Byte Order
The Object Manager will support the AAF requirements for file byte order. These rules are
1) Byte Order is specified on a per file basis, that is, with the exception of certain media types (see below) all the

data in a given file is in the same byte order
2) When a file is created it is created with the byte order of the host
3) When a file is modified the existing byte ordering of the file is preserved
4) Where a media format definition specifies the byte ordering for the media data the rules of the format definition

are followed. Examples are
a) AIFC
b) WAVE

The Object Manager will perform byte reordering on read and/or write where the byte order of the file is different
than that of the host. Such byte reordering is transparent to Object Manager client code. Note that these
requirements apply to both predefined and user defined properties. Note also that these requirements apply only to
the AAF property data itself and not to any meta-data needed by the Object Manager implementation.

3.20 AAF Files Contain Only AAF Objects
The Object Manager will enforce the constraint that AAF files contain only AAF objects. This means two things
1) The root IStorage in an AAF file is an AAF object. The Object Manager opens and creates structured storage

files with StgOpenStorage() and StgCreateDocFile() rather than operating on an IStorage provided
by clients. In other words the Object Manager is responsible for managing the entire structured storage file.

2) The Object Manager provides no interface that allows access to the IStorage representing a given AAF object.
Therefore all IStorages in an AAF file are AAF objects.

3.21 AAF Files And Objects Are Not Embeddable
The Object Manager will enforce the constraint that AAF files and objects are not embeddable in other files. This
constraint is realized by the fact that the Object Manager provides no interface that allows access to the IStorage
representing a given AAF object.

3.22 Internal Interfaces To The Object Manager
The client of the Object Manager in the AAF reference implementation is the Data Model Manager. Since much of
the Data Model Manager code will have originated in the OMFI implementation, the interfaces presented to client
code by the Object Manager will make the porting process as simple as possible.

3.23 External Interfaces To The Object Manager

AAF Object Manager Design Specification Page 12
June 4, 2001 Avid Technology 1.1

The only client of the Object Manager in the AAF reference implementation is the Data Model Manager. There is
no requirement for the Object Manager to export interfaces that are visible to clients of the AAF reference
implementation. This means that even though clients of the AAF reference implementation will use COM to call
the AAF API, there is no requirement that the Object Manager implementation use COM.

3.24 Admissibility Of Alternative Implementations Of AAF
The Object Manager design will allow for alternative implementations of AAF. In particular
• The same AAF object created by different implementations of AAF should have the same external

representation.
• Once created, an AAF file must not be tied to a particular AAF implementation.
• The objects in an AAF file must not be identified by COM class ids (code class ids) which are specific to a

particular AAF implementation, instead they must be identified by SMPTE stored object ids which are the
same for all AAF implementations.

3.25 File Size
The Object Manager will create AAF Files that are approximately the same size as an equivalent OMF file. This
may be difficult to accomplish given a Structured Storage implementation with “blocky” allocation.

3.26 Extensible Types
The Object Manager will support the run-time extension of the set of possible property types. That is, the set of
possible property types must not be compiled into the Object Manager.

3.27 Canonical Types
Some types, notably enum and struct types from C and C++ have in memory representations that differ from
compiler to compiler. For enum types different sizes may be chosen. For struct types different alignment
constraints may be applied. These differences in representation most often occur between different platforms but
sometimes arise between different compilers on the same platform and even within the same compiler on a given
platform as the result of applying different compile time options. The Object Manger must support persisting
values of these types in a platform and compiler independent way.

3.28 Performance and Scalability
The Object Manger will meet the following performance goals…
• file open latency independent of the number of objects in the file
• file close latency independent of the number of objects in the file (note that close does not imply save)
• file save time linear with the number of modified objects
• access to set elements logarithmic with the number of objects in the set

3.29 Media Data
The Object Manager must support the storage and retrieval of media data in AAF files. The usual read, write and
seek operations must be supported.

3.30 Portability
The Object Manager portability requirements are the same as for the entire reference implementation. Those
requirements are summarized here. The Object Manager code must be portable to the following platforms…
• Windows NT – x86
• Macintosh – PPC
• Silicon Graphics Irix – MIPS
In addition the Object Manager should not be an obstacle to adopters wishing to port the reference implementation
to other platforms. These requirements boil down to…
• Use of ANSI conformant C++
• Limiting dependencies on no-AAF technologies to the dependency on Microsoft Structured Storage.

3.31 Client Specified Unique Identifiers
Objects in a reference set need to be uniquely identified. The Object Manager will allow the client code (the Data
Model Manager, or DM, code) to specify the unique identifier, usually a GUID, to be used for a particular object.
Examples of such unique identifiers are…
• a MOB id

AAF Object Manager Design Specification Page 13
June 4, 2001 Avid Technology 1.1

• a SMPTE assigned unique label

3.32 Other Requirements
[TBS. As other requirements are identified they will be summarized here.]

4. Overview of Structured Storage

A structured storage file may be compared to a file system with in a file. The structured storage concepts map to file
system concepts as follows

• IStreams are approximately equivalent to file system files. In particular an IStream may be used to store
arbitrary data just as a file may be used to store arbitrary data.

• IStorages are approximately equivalent to file system directories. In particular an IStorage may contain both
IStreams and other IStorages just as a directory may contain both files and other directories.

5. Design Principles

• Ensure the consistency of the stored format of AAF objects, predefined and extended, by providing automatic
persistence of registered properties. This approach neither requires nor allows individual objects or classes to
manage their own stored representations.

• AAF Files are not a general-purpose object store. Only objects that are described in the AAF Dictionary may be
stored in and retrieved from an AAF file.

• Support natural coding of AAF class methods when accessing persistent properties. That is, no explicit calls are
needed to access properties. Accessing a persistent variable should be as similar as possible to accessing a non-
persistent variable of the same type. This principle is intended to support the migration of the OMFI tool-kit
code into the AAF tool-kit by allowing natural coding of persistent property access.

• Independent of the particular AAF object model or class hierarchy chosen.

• No per-class code to support persistence.

• Construct only legal object networks and files rather than “construct then verify”.

• Loading an object reference is the same as performing a lazy load of the referenced object. Dereferencing an
object reference causes the actual load to occur.

• [TBS. As other design principles are identified they will be recorded here.]

6. Class Interfaces

This section describes the interfaces to the principal classes in the Object Manager.

6.1 Defining and Accessing Properties
This section describes how properties are defined and accessed by the toolkit implementation code. The example
uses a sub-set of the properties of the AAFHeader class.

6.1.1 Framework

To become persistent a class must inherit from class OMStorable. Class OMStorable contains the declaration of the
persistent property set and member functions for saving and restoring the properties.

class OMStorable {

…
protected:

AAF Object Manager Design Specification Page 14
June 4, 2001 Avid Technology 1.1

 void saveTo(OMStoredObject& s) const;
 void restoreContentsFrom(OMStoredObject& s);

 OMPropertySet _persistentProperties;

};

class ImplAAFObject : public OMStorable, public ImplAAFRoot
{
…
};

6.1.2 Property Declaration

A class must declare its properties using template classes exported by the Object Manager. This gives the properties
persistence behavior but allows the implementation code to access them naturally.

class ImplAAFHeader : public ImplAAFObject
{
…
private:
 // Persistent properties
 //
 OMFixedSizeProperty<aafInt16> _byteOrder;
 OMFixedSizeProperty<aafTimeStamp_t> _lastModified;
 OMStrongReferenceVectorProperty<ImplAAFIdentification> _identificationList;

 // Non-persistent properties
 //
 … declared as for regular C++ …

};

6.1.3 Property Access

AAFRESULT STDMETHODCALLTYPE
 ImplAAFHeader::GetByteOrder (aafInt16 *pByteOrder)
{

*pByteOrder = _byteOrder;
return AAF_ERR_NONE;

}

6.1.4 Property and Property Set Initialization

The constructors for all properties take a property id (PID_ value) and a property name. The constructor for a
persistent object must…
1. initialize the properties it contains, and
2. initialize its own property set by inserting the properties
Here is some example code from AAFHeader that illustrates this…

ImplAAFHeader::ImplAAFHeader ()
: // Initialize the properties of this object
 //
 _byteOrder(PID_Header_ByteOrder, "ByteOrder"),
 _lastModified(PID_Header_LastModified, "LastModified"),

AAF Object Manager Design Specification Page 15
June 4, 2001 Avid Technology 1.1

 _identificationList(PID_Header_IdentificationList, "IdentificationList"),
{
 // Initialize the property set of this object by
 // inserting the properties of this object.
 //
 _persistentProperties.put(_byteOrder.address());
 _persistentProperties.put(_lastModified.address());
 _persistentProperties.put(_identificationList.address());
 …
}

Note that OMPropertySet::put() accepts the address of an OMProperty object. The code above calls
OMProperty::address() to obtain the correct address since OMProperty::operator & is overridden to
provide the address of the property data (rather than the property object) for the convenience of AAF class member
functions.

6.2 Saving and Restoring Property Values
Clients of the Object Manager do not need to provide any code that explicity saves or restores individual property
values. The saving and restoring of property values is a file level operation. When a file is opened, using
OMFile::open(), the property values are lazily restored, when a file is saved, using OMFile::save(), any
dirty (changed) properties are written to the file. Changed property values may also be written to the file by an
explicit call to OMFile::save().

6.3 Persistent Property Class Hierarchy
The hierarchy of property classes is as follows:

OMProperty
 OMReferenceProperty<ReferencedObject>
 OMWeakReferenceProperty<ReferencedObject>
 OMStrongReferenceProperty<ReferencedObject>
 OMSimpleProperty
 OMVectorProperty<PropertyType> // Not yet implemented
 OMFixedSizeProperty<PropertyType>
 OMVariableSizeProperty<PropertyType>
 OMCharacterStringProperty<CharacterType>
 OMStringProperty
 OMWideStringProperty
 OMCollectionProperty
 OMStrongReferenceVectorProperty<ReferencedObject>
 OMWeakReferenceVectorProperty<ReferencedObject> // Not yet implemented
 OMStrongReferenceSetProperty<ReferencedObject> // Not yet implemented
 OMWeakReferenceSerProperty<ReferencedObject> // Not yet implemented
 OMDataStreamProperty

6.4 Creating Object Instances
When reading an AAF file the Object Manager needs to be able to create object instances based on the stored object
id found in the file. The following Object Manager interface is defined for this purpose:

class OMClassFactory {
public:

 // Create an instance of the appropriate derived class, given the class id.
 //
 virtual OMStorable* create(const OMClassId& classId) const = 0;

AAF Object Manager Design Specification Page 16
June 4, 2001 Avid Technology 1.1

};

The function OMClassFactory::create() creates an uninitialized instance of the class with the given classId. This
interface is defined by the Object Manager, called by the Object Manager and implemented by the Object Manager
client. The Object Manager reads a stored object id from the AAF file and passes it to
OMClassFactory::create(), this function returns a pointer to a new instance of the appropriate class with a
properly initialized property set (including and extension properties). The phrase “appropriate class” is intended to
include any extension classes and any "default base class instantiation" that is necessary. The phrase “properly
initialized property set” is intented to include any extension properties that may be present.

The Object Manager client is also responsible for associating a given class factory with a given file using the
open/create methods on OMFile.

class OMFile : public … {
public:
…
 static OMFile* openExistingRead(const wchar_t* fileName,
 const OMClassFactory* factory,
 const OMLoadMode loadMode);
…
};

The client of the Object Manager in the AAF reference implementation is the Data Model Manager. The Data
Model Manager implements OMClassFactory::create() with reference to the appropriate AAFDictionary.

6.4.1 Creating Objects and Meta Data Objects

This section outlines some design rules to be observed when creating objects, and the associated meta-data objects.
1) No OMProperty may be created withouth having a valid OMPropertyDefinition*
2) No property value may be read or written without having a valid OMType*, this is obtained from the

OMPropertyDefinition* supplied when the OMProperty was created.
3) All properties to be created as required properties (as opposed to optional properties) prior to property

initialization.
4) After an object is created (instantiated), but before its properties are initialized the meta-data for that object must

exist in memory in a valid state. This meta-data includes
a) a ClassDefinition for the object and all of its ancestor classes
b) a PropertyDefinition for each property in each of the above ClassDefinitions
c) a TypeDefinition for each of the above PropertyDefinitions

The meta-data is created on demand. The meta-data for Class Foo is created the first time an instance of class Foo is
created, subsequent instances of class Foo share the same meta data as all previous instances.
5) There are two kinds of built in information.

a) The information needed to create "standard" AAF objects that are not defined in the current file (in the case
of CreateNewModify() this means all classes).

b) The information that cannot be read from the file because it is either intrinsic (e.g. an object is an IStorage)
or self describing (e.g. the instance of ClassDefinition that describes a ClassDefinition object or the Name
property of TypeDefinitionString which is itself of a type described by TypeDefinitionString).

6) This results in the following Axioms
a) Create function

i) File (should have no SOID)
ii) Header
iii) Dictionary

b) LookUpClass function
i) ClassDefinition

c) LookUpType function
i) StrongReference

AAF Object Manager Design Specification Page 17
June 4, 2001 Avid Technology 1.1

ii) StrongReferenceVector
iii) StrongReferenceSet
iv) WeakReference (AUID)
v) WeakReferenceVector (AUID array)
vi) WeakReferenceSet (AUID array)
vii) AUID
viii) String

d) LookUpProperty function
i) ?

7) The axiomatic definitions are
a) Never read from the file.
b) Written to the file for consistency.

Doing this requires an api other than LookUp. An api is needed that will determine if an object is present in the file
without causing the object to be loaded if it is in fact present. e.g. bool
OMStrongReference{Set|Vector}<>::isPresent(AUID ident);
8) The axiomatic definitions are implemented as follows. This example uses LookUpType, however, there are

other axiomatic definitions.

 LookUpType(a)
 {
 if (a == axiomatic type 1) {
 create type 1 in memory
 ensure type 1 is present in file dictionary
 result = type 1
 } elseif (a == axiomatic type 2) {
 create type 2 in memory
 ensure type 2 is present in file dictionary
 result = type 2
 } elseif (a == ...) {
 ...
 } elseif (a == axiomatic type N) {
 create type N in memory
 ensure type N is present in file dictionary
 result = type N
 } else {
 if (a is registered in dictionary) {
 result = type of a // type is unpersisted here
 } else {
 create type of a
 register type of a
 result = type of a
 }
 }
 }
9) As a debugging/diagnostic aid the implemetation should detect loops caused by an incorrect implementation

(e.g. missing axiom). One way to do this is as follows.

 Stack t;

 CreateDefinition(def, ident)
 {
 if (t.contains(ident)) {
 error
 } else {
 t.push(ident)

AAF Object Manager Design Specification Page 18
June 4, 2001 Avid Technology 1.1

 ... creation code ...
 o = create def
 o.SetIdentification(i)
 ...
 t.pop(ident)
 }
10) An alternative scheme would be to use 3-stage object creation (instantiate, register and initialize) as a means of

breaking cycles. That approach has the disadvantage that an object may be accessed after being instantaited and
registered but before being initialized. Also it does not prevent by itself, attempting to read axiomatic
definitions from the file.

6.5 Type-specific Byte Reordering, Internalization and
Externalization
There are at least two approaches to choosing the persisted representation of structured types. Here “structured types”
includes structs, arrays and enums - anything where a compiler has a choice of the in-memory representation. The
compiler choices are as follows…

a) The size of a data item
b) The alignment of a data item (and consequently padding)

Note also the repertoire of types supported by the Object Manager is not compiled-in, but is instead available at
run-time as described in the dictionary.

The two possible approaches are
a) persist using the (possibly byte-swapped) in memory representation of the host platform (machine + OS +

compiler) and describe that representation in the dictionary.
b) use an AAF defined canonical representation.

The approach chosen by the Object Manager is b) since it is
a) simple to explain and document
b) in accordance with the plan for SMPTE standardization
c) platform (machine + OS + compiler) neutral and so fosters interchange

6.5.1 Definition of OMType.

These requirements result in an interface used by the Object Manager for manipulating data types at run time.
Class OMType is defined as follows.

class OMType {
public:

 virtual void reorder(...);
 virtual void externalize(...);
 virtual void internalize(...);

};

The purpose of each virtual function is as follows …

a) reorder() - put the bytes of the data into the proper order, “byte swap”. By convention the data is taken
to be in external form.

b) externalize() - put the bytes of the data into the appropriate external from, typically this involves
removing any padding (for record types), and adjusting the size of the data (for enumerated types).

c) internalize() - put the bytes of the data into the appropriate internal from, typically this involves
adding any required padding (for record types), and adjusting the size of the data (for enumerated types).

AAF Object Manager Design Specification Page 19
June 4, 2001 Avid Technology 1.1

Note this design uses externalize() and internalize() instead of, say, pack() and unpack() since
externalize() may in fact make a data value larger. For example, aafBool compiles to 1 byte with
Macintosh CodeWarrior and to 2 bytes with NT VC++ (with our current VC++ and CodeWarrior compiler
settings) and so if we choose to make all AAF, non-extensible, enumerations 2 bytes in size, then
externalize() on the Macintosh will cause the value to be increased in size. So clearly externalize() is
to be preferred over pack().

6.5.2 Reading and Writing Values Described by OMType

Given the declarations

 OMType* type;
 OMByte* value;

Persisting a data value is

 type->externalize(value);
 if (fileByteOrder != hostByteOrder)
 type->reorder(value);
 write(value);

Unpersisting a data value is

 read(value);
 if (fileByteOrder != hostByteOrder)
 type->reorder(value);
 type->internalize(value);

All type definitions are implemented in the Data Manager and descended from OMType as follows …

 class ImplAAFTypeDef : public OMType {
 ...
 };
Note that reordering is always performed on values in their external form.

7. Property Types
These types are described in detail in Annex B of the document “Proposed SMPTE Recommended Practice for
Television - Interchange of Video and Audio Material and Related Descriptive Information as Edit Decision Data”.
The classification of the types presented here is introduced by this document.

7.1 Structural Types
The structural types define the structure of a given AAF object network. These types are built in to the Object
Manager.

Type Meaning
Strong reference Containment (ownership) of an object
Strong reference vector Containment (ownership) of an ordered collection of objects
Strong reference set Containment (ownership) of an unordered collection of objects
Weak reference Pointer to an object
Weak reference vector Ordered collection of pointers to objects

AAF Object Manager Design Specification Page 20
June 4, 2001 Avid Technology 1.1

Weak reference set Unordered collection of pointers to objects

7.2 Primitive Types
The primitive types are the fundamental types supported by the Object Manager, all other types are defined in terms
of these. These types are built in to the Object Manager.

7.3 Compositional Types
Used to build define a type in terms of other, previously defined types. These types are built in to the Object
Manager.

7.4 Composed Types
7.4.1 Types Not Specific To AAF

These types are not specfic to AAF. These types are not known to the Object Manager. These types are built in to
the AAF reference implementation. They are defined in terms of the built-in types.

7.4.2 Types Specific To AAF

These types are specfic to AAF. These types are not known to the Object Manager. These types are built in to the
AAF reference implementation. They are defined in terms of the built-in types.

7.5 Summary Of Property Types
1) Primitive Types

a) Integer (parameterised by size and signedness)
2) Compositional Types

a) VaryingArray
b) FixedArray
c) Aggregate
d) Renamed
e) Enumerated
f) String
g) Stream (DataValue, essence or media data)

3) Composed types
a) Types Not Specific To AAF

i) Character types
(1) Character (UInt16 - Unicode character)

ii) Enumerated types
(1) Boolean

iii) Signed numeric types
(1) Int8
(2) Int16
(3) Int32
(4) Int64

iv) Unsigned numeric types
(1) UInt8
(2) UInt16
(3) UInt32
(4) UInt64

v) Signed numeric array types
(1) Int8Array
(2) Int16Array
(3) Int32Array
(4) Int64Array

vi) Unsigned numeric array types
(1) UInt8Array

AAF Object Manager Design Specification Page 21
June 4, 2001 Avid Technology 1.1

(2) UInt16Array
(3) UInt32Array
(4) UInt64Array

b) Types Specific To AAF
i) Enumerated types

(1) ColorSitingType
(2) EdgeType
(3) EditHintType
(4) FadeType
(5) FilmType
(6) JPEGTableIDType
(7) LayoutType
(8) ProductVersion
(9) PulldownKindType
(10) PulldownDirectionType
(11) PhaseFrameType
(12) TapeCaseType
(13) TapeFormatType
(14) VideoSignalType
(15) TCSource
(16) ReferenceType

ii) Aggregate types
(1) TimeStamp
(2) VersionType
(3) Rational
(4) Rectangle

iii) Renamed types
(1) Length
(2) Position

iv) Array types
(1) CompCodeArray
(2) CompSizeArray

7.6 How Types Are Composed
Composed types (instances of compositional types) contain pointers to the types of which they are composed. For
example, a fixed array of integers is prepesented by an instance of an array that contains a count of the number of
elements and a pointer to an integer type.

The compositional types support the same polymorphic interface as the primitive types. This is an example of the
“Composite” design pattern.

As an example consider a reorder() method to reorder (“byte swap”) a value of that type. For a primitive type,
such as an integer, the reorder() method is implemeted as a direct manipulation of the bytes of the value. For a
composed type, say a fixed array of integer, the reorder() method is implemented by multiple reorder()
calls on the composed type, in this case integer. In this example the array reorder() method is simply a loop
that calls the reorder() method for the array element type.

7.7 Mapping Of Types To Structured Storage
This table shows how the property types map to the different stored forms supported by the Object Manager when
mapping property values to structured storage.

Type Mapped to Structured Storage by Object Manager as
Strong reference SF_STRONG_OBJECT_REFERENCE
Strong reference vector SF_STRONG_OBJECT_REFERENCE_VECTOR
Strong reference set SF_STRONG_OBJECT_REFERENCE_SET

AAF Object Manager Design Specification Page 22
June 4, 2001 Avid Technology 1.1

Weak reference SF_WEAK_OBJECT_REFERENCE
Weak reference vector SF_WEAK_OBJECT_REFERENCE_VECTOR
Weak reference set SF_WEAK_OBJECT_REFERENCE_SET
Media data SF_DATA_STREAM
All other data types SF_DATA

See section 8.4 of this sepcification for more details on the mapping of AAF property types on to structured
storage. The SF_* values are passed as the "storedForm" parameter in the OMStoredObject::read() and
OMStoredObject::write() calls.

Note that the SF_STRONG_OBJECT_REFERENCE_SET and SF_WEAK_OBJECT_REFERENCE_SET stored
forms are not yet implemented. The VECTOR form is used in all cases. The only consequence of this is that
ordering is preserved where it need not be.

7.8 Indirect, private, encrypted, opaque and KLV types
This section describes a design solution for the representation of the following data types in AAF.
1) The following three uses of DataValue

a) "stream" - as in EssenceData::Data and TimeCodeStream::Source
b) "varying array of bytes" - as in AIFC::Summary, EdgeCode::Header, RGBADescriptor::Palette,

TIFFDescriptor::Summary and WaveDescriptor::Summary
c) "void *" - as in ConstantValue::Value, ControlPoint::Value and TaggedValue::Value

2) "private types" - that is data whose type is known to party A, the creator of the data, and to party B the
consumer of the data, but not to party C who may modify the file containing the data being communicated from
A to B. The data is private to A and B. The private data must be preserved, without client code intervention,
when C modifies the file in which it resides.

3) "encrypted types" - The same as "private data" except that the data is encrypted. While A and B trust each other,
neither trusts C. Again the data must be preserved across modifications made by C.

4) "SMPTE KLV types"

7 .8 .1 Design proposal

7.8.1.1 DataValue

7.8.1.1.1 DataValues Representing a “stream"
Such properties should not be implemented as DataValues. This is already implemented, streams are described by
AAFTypeDefStream and implemented by OMDataStreamProperty.

7.8.1.1.2 Data Values Representing "array of bytes"
Such properties should not be implemented as DataValues. Arrays of bytes are described by
AAFTypeDefVariableArray (or by AAFTypeDefFixedArray) with an element type of "unsigned 8-bit integer" and
implemented by OMVariableSizeProperty<OMByte>

7.8.1.1.3 DataValues representing "void *"
These values are represented by AAFTypeDefIndirect. Values described by AAFTypeDefIndirect consist of
1) the AUID of the actual type
2) the value as a variably sized array of bytes
The class AAFTypeDefIndirect has no properties of its own other than a reference to the actual type.
Properties values described by AAFTypeDefIndirect are automatically byte swapped by the Object Manager just like
any other type.
The class AAFTypeDefIndirect has a method, ActualType() which returns the actual type of a given value. This
works by retrieving the AUID from the value and looking it up in the dictionary. It is required that the AUID
represent a type in the dictionary otherwise the file is invalid.

AAF Object Manager Design Specification Page 23
June 4, 2001 Avid Technology 1.1

This design satisfies the requirement that the type of a property does not change, since properties of this type are
always described as AAFTypeDefIndirect.
This design allows the actual type of a property to vary on a property instance by property instance basis by storing
the AUID for the actual type along with the property value.
7.8.1.2 "private types"

These values are represented by AAFTypeDefPrivate. The design for AAFTypeDefPrivate is identical to that of
AAFTypeDefIndirect except for the following
1) Values described by AAFTypeDefPrivate also contain the byte order in which the property value was first

created.
2) Properties values described by AAFTypeDefPrivate are only byte swapped by the Object Manager when accessed

by a party who knows the actual type.
3) The ActualType() method can fail when applied to a legal file. This happens if party C (to whom the type is

private) tries to access the property.
4) The ActualType() method succeeds if the type definition corresponding to the AUID in the property value is first

installed in the dictionary, for example by party B (to whom the type is not private).
7.8.1.3 "encrypted types"

These values are described by AAFTypeDefEncrypted. The design for AAFTypeDefEncrypted is identical to that of
AAFTypeDefPrivate except for the following
1) Values described by AAFTypeDefEncrypted also contain a GUID, for use by trusted parties to identify the

encryption method (or encryption key).
2) After calling ActualType() trusted clients must first decrypt the data before using the actual type to interpret it..
7.8.1.4 "SMPTE KLV types"

These values are described by AAFTypeDefSMPTEKLV. Values described by AAFTypeDefSMPTEKLV consist of
1) the byte order in which the property value was first created
2) the SMPTE value V as a variably sized array of bytes
The class AAFTypeDefSMPTEKLV has the following properties
1) the SMPTE key K as an unsigned integer
2) an AUID identifying the type of the value if such a type has been defined or, if not, identifying

AAFTypeDefOpaque (see below)
Properties values described by AAFTypeDefSMPTEKLV are automatically byte swapped by the Object Manager just
like any other type (unless their type is described by AAFTypeDefOpaque).
The class AAFTypeDefSMPTEKLV has a method, ActualType() which returns the actual type of a given value.
This works by looking up the AUID (a property of AAFTypeDefSMPTEKLV) in the dictionary.
Thus instances of AAFTypeDefSMPTEKLV define a mapping from SMPTE keys onto AAF types that describe the
associated SMPTE values. This is a many to one mapping. That is, several different SMPTE keys may map to the
same AAF type.
Initially values can be described by AAFTypeDefOpaque, these can then later be described by appropriate AAF
predefined types without invalidating any previously stored values. In this way AAF files may contain KLVs with
unknown keys (This is the whole purpose of KLV).
Note that the SMPTE length L is not stored explicitly, instead it is an attribute of the value.
7.8.1.5 AAFTypeDefOpaque

This type allows values whose type is unknown (temporarily or permanently) safely to be stored in AAF files. The
value of a property described by AAFTypeDefOpaque consists of
1) the byte order in which the property value was first created
2) the value as a variably sized array of bytes.

7.9 Name Equivalence
Unfortunately the names for various Object Manager concepts have evolved differently in different documents. The
following table shows the equivalence between the various names.

Concept Object
Spec

Original
SMPTE draft

Latest SMPTE
draft

Symbolic Name

Strong Reference ObjRef ObjRef StrongRef SF_STRONG_OBJECT_REFERENCE
General Weak Reference None None None None

AAF Object Manager Design Specification Page 24
June 4, 2001 Avid Technology 1.1

Restricted Weak Reference ObjRef RefAUID WeakRef SF_WEAK_OBJECT_REFERENCE
Strong Reference Vector ObjRef ObjRefArray StrongRefArra

y
SF_STRONG_OBJECT_REFERENCE_VECTOR

General Weak Reference Vector None None None None
Restricted Weak Reference
Vector

ObjRef RefAUIDArra
y

WeakRefArray SF_WEAK_OBJECT_REFERENCE_VECTOR

Strong Reference Set None None StrongRefSet SF_STRONG_OBJECT_REFERENCE_SET
General Weak Reference Set None None None None
Restricted Weak Reference Set None None WeakRefSet SF_WEAK_OBJECT_REFERENCE_SET

AAF Object Manager Design Specification Page 25
June 4, 2001 Avid Technology 1.1

8. Object Manager Design

The following sections describe the design of the principle aspects of the Object Manager.

8.1 Object Manager Interfaces
This section describes the interfaces to the Object Manager.

Access to most Object Manager functionality is provided implicitly from the perspective of tool kit clients.
Exceptions to this are the AAFSession, AAFile and AAFClassDictionary classes which allow tool kit clients
explicit access to Object Manager functionality.

8.1.1 Interfaces to Support the Tool Kit Implementation

The Object Manager will provide the following explicit interfaces for use by the implementation of the tool kit.

8.1.1.1 Definition Classes

The Object Manager must support both predefined and user defined AAF classes. This design proposes that
instances of AAF definition classes are used to represent both predefined and user defined AAF classes.

8.1.1.2 Equivalence of Predefined and User Defined AAF Classes

The AAFClassDictionary class manages instances of these definition classes. There is one instance of the
AAFClassDictionary class for each AAF file.

An application must register any extensions it makes to AAF with the tool kit. This design proposes that the same
underlying mechanism is used for registering both predefined and user defined AAF classes. This design also
proposes that the information for the definition of the predefined classes be derived from the same source as the
class declarations for the AAF classes. A set of preprocessor macros will be provided for use in declaring and
defining the predefined AAF classes. This set of macros will, in effect, call the same API functions that tool kit
clients will call when creating extension AAF classes. However, in the case of the predefined AAF classes, certain
optimizations will be provided. These optimizations include

1) No consistency checking at application run time, except in the debug version of the tool kit.
2) Registration of predefined AAF classes takes place at compile time instead of at run time. This will be hidden

by the macros.
3) Instances of the definition objects that describe the predefined AAF classes will be shared across the class

dictionaries associated with different AAF files. If an application chooses to modify, by extension, an existing
definition, for example, by adding a property to one of the predefined AAF classes, then the definition object
will be copied prior to extension. This is an implementation of “copy on write” semantics.

4) Instances of the predefined definition classes are not persisted; this is the very definition of “predefined”. An
exception is the case of an extended predefined class.

The provided macros will include the following. See the source file AAFMetaDictionary.h for more details.

1) AAF_TABLE_BEGIN() - Begin a table of AAF class and property definitions.

2) AAF_TABLE_END() - End a table of AAF class and property definitions.

3) AAF_CLASS(name, id, parent) - Define an AAF class.

 name = the name of the class
 id = the auid used to identify the class

AAF Object Manager Design Specification Page 26
June 4, 2001 Avid Technology 1.1

 parent = the immediate ancestor class

4) AAF_CLASS_END(name) - End an AAF class definition.

 name = the name of the class

5) AAF_CLASS_SEPARATOR() - Separate one AAF class definition from another.

6) AAF_PROPERTY(name, id, tag, type, mandatory, container) - Define an AAF property.

 name = the name of the property
 id = the auid used to identify the property
 tag = the short form of the id
 type = the type of the property
 mandatory = true if the property is mandatory
 false if the property is optional
 container = the class that defines this property

8.1.1.2.1 Class Definition
[TBS. This section will describe the API provided by the Object Manager for use in defining classes.]

8.1.1.2.2 Property Definition
[TBS. This section will describe the API provided by the Object Manager for use in defining properties.]
There will be no separate API for creating property definition objects. Property definition objects cannot be created
without reference to the class to which they belong.
8.1.1.3 Property Access

[TBS. This section will describe the API provided by the Object Manager for use in accessing properties.]
8.1.1.4 Media Stream Access

Clients of the tool kit will be able to access both external and embedded media data via the AAFMediaStream class.
Once an instance of the AAFMediaStream class has been created, internal and external media are accessed
transparently.
8.1.1.5 Media Stream Access Functions

[TBS. This section will describe the Object Manager interfaces that support the AAFMediaStream class.]
The Object Manager will provide the following operations on media streams.
1. Open
2. Close
3. Read
4. Write
5. Seek
6. GetPosition
7. SetPosition

8.1.2 Interfaces Used By The Object Manager

The Object Manager will use the interfaces described in the following sections.

8.1.2.1 Structured Storage

The Object Manager will use the IStorage and IStream interfaces and the StgOpenStorage and StgCreateDocfile
APIs. Only functionality supported by the reference implementation of Structured Storage will be used.

8.2 File Level Operations
The Object Manager provides the following file level operations.

AAF Object Manager Design Specification Page 27
June 4, 2001 Avid Technology 1.1

1) Open an existing file for reading only.

2) Open an existing file for modification.

3) Create an empty file.

4) Create a transient file.

5) Close an open file. On close no save is implied, changes to a file must be saved explicitly.

6) Save changes to an open file. That is, write out all dirty objects.

7) Control lazy loading. These modes must be specified when the file is opened. There are two levels of lazy
loading.

a) None (or eager loading) – the entire contents of the file is loaded when it is opened. That is, all strong
references are followed. This mode is useful, for example, in applications that cannot tolerate loading
delays while processing a group of objects. In this mode memory reclamation or “lazy unloading” is not
performed.

b) Object granularity (or lazy loading) – when an object is loaded, the whole object is loaded. This means
loading all properties except media. References are not followed. This mode is useful, for example, when
accessing all of the properties of a few of the objects in an AAF file. In this mode memory reclamation or
“lazy unloading” is performed.

8) Revert. Discard any changes made to the file since the last open or save operation.

8.2.1 Semantics of AAFFile::Save() and AAFFile::Close()

This section is a summary of the semantics of AAFFile::Save() and AAFFile::Close() as they relate to unsaved
changes and to read-only files. In this section client means AAF API client and not Object Manager client.

1) Clients should call AAFRoot::ReleaseReference() on the head object before calling AAFFile::Close().
2) AAFFile::Close() does not call AAFFile::Save().
3) To ensure that objects are saved clients must explicitly call AAFFile::Save() before calling AAFFile::Close().

This is because of point 2.
4) AAFile::Close() calls AAFRoot::ReleaseReference() on the head object.
5) AAFFile::Save() silently ignores unsaved objects (The objects are not saved and the HRESULT is success).
6) AAFFile::Save() on a read-only file always fails.
7) AAFFile::Save() on a transient file always fails.
8) AAFFile::Save() silently ignores unsaved objects associated with a read-only file. This is a consequence of

point 5 which applies equally to read-only and to writeable files.
9) An application may open a read-only file and modify the objects associated with that file. The modifications

cannot be saved to the original file (Because of point 6). The modifications must either be written to another
file with AAFFile::SaveAs() or moved/copied to another writeable file and then saved.

10) An application may discard all unsaved changes by calling AAFFile::Revert(), provided that the file was
opened in revertable mode.

11) Media data (essence) is treated as a special case.
a) Changes to media data are never revertable
b) Changes to media data take place immediately in advance of any call to AAFFile::Save()
c) Any attempt to write media data to or change media data in a read-only file fails immediately.

8.2.2 File Mode Flags

The following bits are defined in the modeFlags argument to the following calls
• AAFFileOpenExistingRead ()
• AAFFileOpenExistingModify()
• AAFFileOpenNewModify ()

Public bit definitions
• kAAFFileModeUnbuffered - to indicate buffered mode. Default is buffered.
• kAAFFileModeRevertable - to indicate that Revert is possible on this file (for all changes except those to

essence).

AAF Object Manager Design Specification Page 28
June 4, 2001 Avid Technology 1.1

• kAAFFileModeEagerLoad - to indicate that the objects in the file should all be loaded when the file is opened .
The default is lazy loading in which the objects are loaded on demand.

• kAAFFileModeReclaimCleanObjects - to indicate that the memory associated with clean in-memory objects
may be relaimed. The default is never to reclaim the memory associated with clean objects.

Private bit definitions (to help with performance optimizations)
• kAAFFileWriteProperties - to indicate that objects be written out one property at a time. The default is to write

whole objects. (undocumented)
• kAAFFileModeKeepObjectsOpen - to indicate that the IStorage for all objects should be kept open. The default

is to keep the IStorage for all objects closed, except during Save(). (undocumented).
• kAAFFileModeWriteAllObjects - to indicate that the dirty bit be ignored on Save(). The default is to write

only dirty objects on Save(). (undocumented)
• kAAFFileSeparateIndexAndValue - to indicate that the property set index and the property values of an object

be stored in separate IStreams. The default is to combine them into a single IStream. (undocumented)
• kAAFFileModeUseLargeSectors - to indicate that the 4k (large) sector size implementation of structured storage

be used (if available). The default is to use the small sector size implementation. Warning - use of this flag
creates files that are incompatible with the small sector size implementation of structured storage
(undocumented).

• KAAFFileCloseFailDirty – to indicate that Close() should fail if there are dirty objects. (undocumented)

8.3 Persistence Infrastructure

8.3.1 Persistence Rules by Type

The actions required to persist data depend upon the type of that data. The Object Manager needs to able to persist
the following classes of data
1. Property values. There are two kinds of property value

1.1. Ordinary property data, both simple and structured
1.2. Media data

2. Object references. There are six kinds of object reference
2.1. Strong object references
2.2. Strong object reference vectors
2.3. Strong object reference sets
2.4. Weak object references
2.5. Weak object reference vectors
2.6. Weak object reference sets

8.3.1.1 Property Values

The primitive, or built-in, types form the base vocabulary of types. All properties are defined in terms of the
primitive types.

8.3.1.1.1 Ordinary Property Data

Ordinary property data is stored in an IStream contained in the IStorage that represents the object that contains the
property data. The property index, in a separate index IStream, describes the offset and extent of the property data in
the property value IStream.

8.3.1.1.2 Media Data
Media data is stored in an IStream contained in the IStorage that represents the object that contains the media data.

8.3.1.2 Object References

Object references are the mechanism for describing associations between objects. All associations between objects
are described using object references.

8.3.1.2.1 Strong Object References

AAF Object Manager Design Specification Page 29
June 4, 2001 Avid Technology 1.1

A strong reference denotes containment and ownership of one object by another object.

To persist a strong object reference, the strong object reference is followed. If the referenced object is has not already
been persisted, it is persisted by applying these rules recursively. This is recursive persistence. In this design an
optimization to recursive persistence is proposed. All dirty objects can be found without traversing the entire tree of
strong references. The object directory contains one entry for each object that is in memory. Additionally the dirty
objects are tagged as such. Consulting the object directory allows all the dirty objects to be found without
traversing the entire tree of strong references.

8.3.1.2.2 Strong Object Reference Vectors
A strong object reference vector denotes containment and ownership of a collection of objects by another object.

A strong object vector is persisted by iterating over the elements of the vector and treating each as a strong object
reference.

8.3.1.2.3 Strong Object Reference Sets

8.3.1.2.4 Weak Object References

A weak reference denotes a general, possibly shared, association from one object to another.

To persist a weak object reference an external representation of the weak reference is persisted.

8.3.1.2.5 Weak Object Reference Vectors
[TBS.]

8.3.1.2.6 Weak Object Reference Sets
[TBS.]

8.3.1.3 Non-Persistent Data

Some attributes of persistent objects are not themselves persistent. Such attributes exist only to support in memory
access to persistent objects. Examples are

1. Class dictionary entries for predefined classes

2. Object contexts

3. Those portions of the Object Directory that manage in-memory objects

8.3.2 How Save Works

When an object is in the persistent store a record of its location in persistent store is maintained in the object
directory, a per-AAF file data structure. The object directory maps object references to the locations in persistent
store of the referenced objects. When a reference is followed during a save operation the object directory is consulted
first. If the referenced object is found in the object directory then its location in persistent store is returned and
written to the persistent store. If the object is not found in the object directory then a new entry is made in the
object directory and the object is written to persistent store by applying these rules recursively.

8.3.3 Saving a Single Object

This section will describe the steps performed by the Object Manager when saving a single object. This code exists
only on class OMStorable since it is the same for all classes.

void OMStorable::save(void) const
{
 store()->save(classId());
 store()->save(_persistentProperties);
}

AAF Object Manager Design Specification Page 30
June 4, 2001 Avid Technology 1.1

8.3.4 How Restore Works

When an object is in memory a record of its location in memory is maintained in the object directory, a per-AAF
file data structure. The object directory maps object references to the locations in memory of the referenced objects.
When a reference is followed during a restore operation the object directory is consulted first. If the referenced object
is found in the object directory then its location in memory is returned as the result of the dereference operation. If
the object is not found in the object directory then the Class Factory is used to create an uninitialized object
instance of the appropriate sub-class. The location in memory of the newly created instance is entered into the object
directory and the object is initialized from persistent store by applying these rules recursively.

8.3.5 Restoring a Single Object

This section describes the steps performed by the Object Manager when restoring a single object. This code exists
only on class OMStorable since it is the same for all classes.

OMStorable* OMStorable::restoreFrom(const OMStorable* containingObject,
 const char* name,
 OMStoredObject& s)
{
 OMClassId cid;
 s.restore(cid);

 OMFile* f = containingObject->file();
 OMStorable* object = f->classFactory()->create(cid);

 object->setContainingObject(containingObject);
 object->setName(name);
 object->setStore(&s);

 f->objectDirectory()->insert(object->pathName(), object);

 object->restoreContentsFrom(s);

 return object;
}

8.3.6 Persisting References

8.3.6.1 Isomorphism

Supporting isomorphism means that

• Multiple in-memory references to the same in-memory object must be persisted as on-disk references to the
same on-disk object.

• Multiple on-disk reference to the same on-disk object must be restored as in-memory references to the same in-
memory object.

This is implemented by consulting the object directory during the save and restore operations.

• During a save operation the object directory is consulted to see if a given object instance has already been saved
and, if so, the object is not saved again.

• During a restore operation the object directory is consulted to see if a given object instance has already been
restored and, if so, the object is not restored again.

AAF Object Manager Design Specification Page 31
June 4, 2001 Avid Technology 1.1

8.3.6.2 Circular References

Circular references are legal and the requirement for isomorphism means that they must be saved and restored. A
persistence implementation must not recur or loop infinitely when faced with a request to persist an object network
containing circular references. Persistence of circular references is implemented through the object directory, which
ensures that exactly one reference is followed when a given object is persisted, thus breaking the cycle.

8.3.6.3 Null References

It is legal for both strong and weak references to be null references. Null references are handled as a generalization of
object references. They are treated as if they were a reference to a fictional “null object”. During save each reference is
checked to see if it is a null reference and if so it is persisted as a reference to the “null object”. During restore
references to the null “object” are restored as null references.

8.4 Optional Properties
8.4.1 Data Manager View of Optional Properties

8.4.1.1 OMProperty Routines

class OMProperty {
public:
 ...

 // @cmember Is this an optional property ?
 // @this const
 bool isOptional(void) const;

 // @cmember Is this optional property present ?
 // @this const
 bool isPresent(void) const;

 // @cmember Remove this optional property.
 void remove(void);

 ...

};

8.4.1.2 Routine semantics

1. A property is either optional, isOptional() == true, or required, isOptional() == false.
2. An optional property may be present, isPresent() == true, or absent, isPresent() == false.
3. It is a programming error to ask if a required property is present, since, by very definition, a required property

must be present.
4. An optional property may be removed, by calling remove().
5. It is a programming error to attempt to remove an optional property that is not present. It is also a

programming error to attempt to remove a required property.
6. Removing an optional property removes the value of that property from the in-memory and the on-disk

representations of the object that contains the property. Once a property has been removed the property value is
lost since the only way to make the property present again is to set the property to a new value thus destroying
the old value,

7. Setting the value of an absent optional property makes the property present.

The routine pre and post conditions are summarized, more formally, as follows...

Routine precondition postcondition

AAF Object Manager Design Specification Page 32
June 4, 2001 Avid Technology 1.1

IsOptional() none none
IsPresent() isOptional() none
Remove() isPresent() !isPresent()
get property value isOptional() implies isPresent() none
set property value none isPresent()

8.4.1.3 Validity Constraints

1) The concept of optionality is orthogonal to the concept of property value. Property values are subject to their
own independent set of validity constraints. In particular
a) A void strong reference property is different than an absent optional strong reference property.
b) A strong reference vector property with no elements (or with all void elements) is different than an absent

optional strong reference vector property.
c) A null GUID is different than an absent weak reference property.

2) It is, however, a programming error to attempt to remove an optional property that represents valid
containment. The DM must detach any contained objects before removing the optional property that contains
them. The cases are
a) A non-void OMStrongReferenceProperty.
b) An OMStrongReferenceVectorProperty containing any non-void elements.

8.4.1.4 Declaring an Optional Property

There is no declaritive interface for optionality. Optional properties must be declared in the same way as required
properties. The optionality of a property is defined when its containing object is created by
OMClassFactory::create(). The OMClassFactory interface is defined by and used by the Object
Manager, it is implemented by the Data Manager class ImplAAFDictionary using
AAFMetaDictionary.h)

8.4.1.5 Accessing an Optional Property

When the Data Manager sets the value of an optional property that is not present the Object Manager makes the
property present and sets it to the given value.

When reading an optional property the Data Manager must first check that the property is present. If the property is
not present the Data Manager may choose either to return a default value for the property (as illustrated in the
example) or to return a “property not present” error code.

 class ExampleBase {
 public:
 ...
 virtual void setOptionalInteger32(const OMUInt32& i);
 virtual void getOptionalInteger32(OMUInt32& i);
 ...
 private:
 ...
 OMFixedSizeProperty<OMUInt32> _optionalInteger32;
 };

 void ExampleBase::setOptionalInteger32(const OMUInt32& i)
 {
 _optionalInteger32 = i;
 }

 void ExampleBase::getOptionalInteger32(OMUInt32& i)
 {
 // If the optional property is present then return its value
 // otherwise return a default value.

AAF Object Manager Design Specification Page 33
June 4, 2001 Avid Technology 1.1

 if (_optionalInteger32.isPresent()) {
 i = _optionalInteger32;
 } else {
 i = 0;
 }
 }

8.4.1.6 Removing a Simple Optional Property

Removing the _optionalInteger32 property is simply

 _optionalInteger32.remove();

8.4.1.7 Removing Optional Containment

Given the following property declaration…

 OMStrongReferenceProperty<ImplAAFFoo> _optionalFoo;

The property may be removed by…

 ImplAAFFoo* oldFoo = _optionalFoo.setValue(0);
 _optionalFoo.remove();
 if (oldFoo != 0)
 oldFoo->ReleaseReference();

8.4.1.8 On-Disk Implications

An optional property that is not present for a given object instance has no entry in the property index for that object.
That is, there is no on disk overhead for optional properties that are not present.

8.4.2 Validation

When checking objects for validity on save and restore, optional properties are, of course, permitted to be absent
from the property index.

8.4.3 Internals

On class OMProperty there are the following state variables

 bool _isOptional;
 bool _isPresent;

The class invariant includes

INVARIANT("Mandatory property present", IMPLIES(!isOptional(), isPresent()));

The OMProperty instance representing a given optional property is always contained within the associated
OMPropertySet whether or not the associated property value is present. The OMPropertySet represents the
set of potential properties. Each OMProperty instance records, through the _isPresent state variable, whether
or not the property value is present.
The _isOptional state variable is set at object creation time and cannot be changed.
The _isPresent state variable is set whenever the property value is set (either by restore from disk or via the
OMProperty interface), The _isPresent state variable is reset when remove() is called and when, during
restore, the on-disk property index is found not to include that property.

AAF Object Manager Design Specification Page 34
June 4, 2001 Avid Technology 1.1

8.4.4 Dictionary

The dictionary (class ImplAAFDictionary), which implements OMClassFactory::create(), is responsible for
properly initializing the properties of each newly created object according to the contents of
AAFMetaDictionary.h.

8.5 Mapping of AAF Objects to Structured Storage
The basic mapping of AAF Objects to structured storage is as follows

• All AAF objects map to IStorages.

• Contained property values are stored in a single contained IStream.

• Contained AAF objects map to contained IStorages.

The IStorages and IStreams within a structured storage file form a tree. However, the objects associated with an
AAF file form a network. This apparent clash of structures is resolved in this design by requiring that every object
in the network, except the root object, have exactly one owner. That is, each object is contained within exactly one
other object. This relationship is implemented by strong object references. The number of strong references to an
object must always be one. When these conditions are met, the strong object references form a tree that includes all
objects. This tree maps directly on to the tree formed by the IStorages and IStreams within a structured storage file.

Thus strong references are represented explicitly in memory and implicitly in the structured storage file.

Other, non-containing, non-owning, object associations are represented by weak references. There may be zero or
more weak references to an object. Weak references are represented explicitly in memory and explicitly in the
structured storage file.
8.5.1 Details of Mapping

1) Each AAF object is represented by a corresponding IStorage object. The class id of the AAF object is part of
the IStorage object and is part of the structured storage overhead.

2) Each IStorage contains an IStream called "property index" that describes the contents of the "property values"
IStream. The "property index" IStream contains a header followed by a counted array of structures.
a) The header has the format.

i) Byte order. Legal values are ‘II’ = Intel (little-endian), ‘MM’ = Motorola (big-endian).
ii) Count of properties. The number of array elements that follow.

b) The counted array has the format with the following fields
i) Property id – an AUID that identifies this property.
ii) Property stored form - the structural “type” of the property. This indicates the meaning of the

information in the property values IStream. The valid property stored forms are
(1) SF_DATA
(2) SF_DATA_STREAM
(3) SF_STRONG_OBJECT_REFERENCE
(4) SF_STRONG_OBJECT_REFERENCE_VECTOR
(5) SF_STRONG_OBJECT_REFERENCE_SET
(6) SF_WEAK_OBJECT_REFERENCE
(7) SF_WEAK_OBJECT_REFERENCE_VECTOR
(8) SF_WEAK_OBJECT_REFERENCE_SET
(9) SF_WEAK_OBJECT_REFERENCE_STORED_OBJECT_ID
(10) SF_UNIQUE_OBJECT_ID
(11) SF_OPAQUE_STREAM
(12) SF_UNIQUE_STRONG_OBJECT_REFERENCE_VECTOR

iii) Offset - the offset of the value of this property into the "property values” IStream.
iv) Length – the length of the value of this property in the “property values” IStream.

3) Each IStorage contains an IStream called "property values" containing the properties for this object. The
“property values” IStream consists of a sequence of property values.

4) Each contained object is stored in a sub-IStorage. The name of the IStorage is given by the value of an entry in
the "property values" IStream with a stored form of SF_STRONG_OBJECT_REFERENCE

5) Contained vectors of objects are represented as follows

AAF Object Manager Design Specification Page 35
June 4, 2001 Avid Technology 1.1

a) Each collection is described by an IStream with a name given by the value of an entry in the “property
values” IStream with a stored form of SF_STRONG_OBJECT_REFERENCE_VECTOR, if the value is
"foo", the stream is named “foo index”.

b) The content of this IStream is a counted array of local keys (integers), and a “high water mark”, indicating
the lowest unused local key.

c) Each local key is used to construct the name of the sub-IStorage corresponding to the object at that
position in the collection. If the value of the first local key in the array is 42 then the name of the sub-
IStorage used to store the first object in the collection is "foo{42}". The local keys are assigned in a non-
repeating ascending sequence, using the “high water mark”. The sequence of local keys is specific to this
collection. Local keys are assigned in this fashion to avoid having to rename any IStorages when elements
are inserted into or removed from the collection.

6) Contained sets of objects are represented as follows. [TBS.]
7) Inter-object references are represented as follows

a) The value of an inter-object reference is the AUID of the referenced object.
b) Value corresponds to an entry in the "property values" IStream with a stored form of

SF_WEAK_OBJECT_REFERENCE.
8) Vectors of inter-object references are represented as follows. [TBS.]
9) Sets of inter-object references are represented as follows. [TBS.]
10) Properties that are media data are represented as follows

a) The "value" of a media data property is the name of a sub-IStream containing that data.
b) The value corresponds to an entry in the "property values" IStream with a stored form of

SF_DATA_STREAM.
11) The unique strong reference set and vector contain uniquely identified objects that may be the target of a weak

reference.
12) Sets provide an efficient (binary tree search) lookup of object by guid. This is used to find a definition in the

dictionary given the AUID of the definition, and to find a Mob given a MobId.

AAF Object Manager Design Specification Page 36
June 4, 2001 Avid Technology 1.1

8.5.2 Examples

8.5.2.1 An Instance of AAFSequence

Parent Storage (contains AUID_AAFSequence)

Stream "property index"

Header
XX // byte ordering
X // version number of this representation
4 // count of properties

Index

Property (PID_) Stored Form (SF_) Offset Length

Component_DataDefinition DATA 00 16
Component_Length DATA 16 08
Sequence_Components STRONG_OBJECT_REFERENCE_VECTOR 24 11

Stream "property values"

Value

xxxxxxxxxxxxxxxx // AUID AAFComponent::DataKind
xxxxxxxx // INT64 AAFComponent::Length
"components" // STRING AAFSequence::Components

Stream "components index"

43 // high water mark
02 // count of elements
42 // local key of first element
13 // local key of second (and last) element

Storage "components 42"

An instance of AAFComponent (or sub-class)

Storage "components 13"

An instance of AAFComponent (or sub-class)

AAF Object Manager Design Specification Page 37
June 4, 2001 Avid Technology 1.1

8.5.2.2 Example Dump

This example is the dump of an AAFSequence object (similar to the one above) by a low-level dump program.

/Content/Mobs{0}/Slots{0}/Segment
Dump of property index
(Byte order = little endian (native), Version = 7, Number of entries = 3)
 property pid (hex) type offset length
 0 201 0 0 16
 1 202 0 16 8
 2 1001 2 24 11

Dump of properties

property 0 (data)
 0 e1 eb e1 78 ef 6c d2 11 80 7d 00 60 08 14 3e 6f ...x.l...}.`..>o

property 1 (data)
 0 32 00 00 00 00 00 00 00 2.......

property 2 (strong object reference vector)
 0 43 6f 6d 70 6f 6e 65 6e 74 73 00 Components.

/Content/Mobs{0}/Slots{0}/Segment/Components
Dump of vector index
(High water mark = 5, Number of entries = 5)
 ordinal local key
 0 : 0
 1 : 1
 2 : 2
 3 : 3
 4 : 4

8.5.2.3 Example Dump of a Set Index

Dump of set index
(High water mark = 3, Number of entries = 3)
 ordinal local key references unique key
 0 : 0 1 {0D1EDA00-7752-11D3-801D-080036210804}
 1 : 1 1 {0D1EDA01-7752-11D3-801D-080036210804}
 2 : 2 1 {0D1EDA02-7752-11D3-801D-080036210804}

8.5.2.4 [Other Examples TBS.]

[TBS. As other examples of how AAF objects are mapped to structured storage are created they will be added here.]
8.5.3 Data Structures

This section describes the data structures used to map AAF object on to structure storage. Note that these are not the
actual data structures, they are provided for illustrative purposes only.
8.5.3.1 Integral Types

These types, assumed to be defined appropriately for a particular host, are used in subsequent declarations.

typedef … UInt8;
typedef … UInt16;
typedef … UInt32;

8.5.3.2 Property Index

8.5.3.2.1 Purpose

AAF Object Manager Design Specification Page 38
June 4, 2001 Avid Technology 1.1

The property index is an index into the property values in the property values stream.

8.5.3.2.2 External representation
An IStream called “property values” containing a PropertyIndexHeader followed by _entryCount
PropertyIndexEntry structs.

8.5.3.2.3 Structure of Property Index Header
A PropertyIndexHeader is defined as follows…

typedef struct PropertyIndexHeader {
 UInt16 _byteOrder;
 UInt32 _formatVersion;
 UInt32 _entryCount;
} PropertyIndexHeader;

The _byteOrder is the byte order of
• the remaining fields of the PropertyIndexHeader struct
• the PropertyIndexEntry structs that follow
• the actual property data
The _formatVersion is version number of the stored format, this allows for otherwise incompatible changes to
the stored format.
The _entryCount is the number of PropertyIndexEntry structs that follow.

8.5.3.2.4 Structure of a Property Index Entry
typedef struct PropertyIndexEntry {
 UInt32 _pid;
 UInt32 _storedForm;
 UInt32 _offset;
 UInt32 _length;
} PropertyIndexEntry;

The _pid is the id that describes the property. This is a shorthand version of the AUID that uniquely identifies
the property. Property ids are locally unique. For all predefined AAF properties the property id is the same in all
AAF files. For user defined extension properties the assigned property id may vary across files.
The _storedForm identifies the “type” of representation chosen for this property. This field describes how the
property value should be interpreted. Note that the stored form described here is not the data type of the property
value, rather it is the type of external representation employed. The data type of a given property value is implied by
the property ID. The actual data type of a property value may be determined by looking up the associated property
id in the AAFDictionary.
The _offset is the byte offset of the property value in the property value stream.
The _length is the length, in bytes, of the property value in the property value stream.

8.5.3.3 Strong Object Reference

8.5.3.3.1 Purpose
A single contained object.

8.5.3.3.2 External Representation
Stored form SF_STRONG_OBJECT_REFERENCE
Property value name of object

AAF Object Manager Design Specification Page 39
June 4, 2001 Avid Technology 1.1

8.5.3.3.3 Structure of a Strong Object Reference
[TBS]

8.5.3.4 Strong Object Reference Vector

8.5.3.4.1 Purpose
An ordered collection of strongly referenced (contained) objects.

8.5.3.4.2 External Representation
Stored form SF_STRONG_OBJECT_REFERENCE_VECTOR
Property value name of vector
Set index name <name of vector> index
Set element name <name of vector>{<local key of element>}
Each vector index consists of a StrongReferenceVectorIndexHeader followed by _entryCount
StrongReferenceVectorIndexEntry structs.

8.5.3.4.3 Structure of a Strong Object Reference Vector Index Header
A StrongReferenceVectorIndexHeader is defined as follows…

typedef struct StrongReferenceVectorIndexHeader {
 UInt32 _entryCount;
 UInt32 _highWaterMark;
} StrongReferenceVectorIndexHeader;

The _highWaterMark is the highest local key ever assigned to an element of this vector. It is one less than the
next local key that will be assigned in this vector.
The _entryCount is the number of VectorIndexEntry structs that follow.

8.5.3.4.4 Structure of a Strong Object Reference Vector Index Entry
typedef struct StrongReferenceVectorIndexEntry {
 UInt32 _localKey;
} StrongReferenceVectorIndexEntry;

The _localKey uniquely identifies this strong reference within this collection independently of its position
within this collection. The _localKey is used to form the name assigned to the element in this vector at the
corrseponding ordinal position. That is, the _localKey of the first StrongReferenceVectorIndexEntry
is used to form the name of the first element in the vector and so on. The _localKey is an insertion key.

8.5.3.5 Strong Object Reference Sets

8.5.3.5.1 Purpose
An unordered collection of strongly referenced (contained) uniquely identified objects, each of which can be
• efficiently located by key - O(lg N)
• the target of a weak reference

8.5.3.5.2 External Representation
Search key obtained from "object->identifier()"
Stored form SF_STRONG_OBJECT_REFERENCE_SET
Property value name of set
Set index name <name of set> index
Set element name <name of set>{<local key of element>}

AAF Object Manager Design Specification Page 40
June 4, 2001 Avid Technology 1.1

StrongReferenceSetIndexEntry structs appear in the index in order of increasing key. If an application consuming the
set index wishes to construct a binary search tree, care must be taken not to invoke the worst case performance by
inserting the keys in order. One way to avoid this problem is to insert the keys in “binary search” order. That is the
middle key is inserted first then (recursively) all the keys below the middle key followed by (recursively) all the
keys above the middle key.
Each set index consists of a StrongReferenceSetIndexHeader followed by _entryCount
StronReferenceSetIndexEntry structs.

8.5.3.5.3 Structure of a Strong Object Reference Set Index Header
typedef struct StrongReferenceSetIndexHeader {
 UInt32 _entryCount;
 UInt32 _highWaterMark;
 UInt32 _identificationPid;
 UInt32 _identificationSize;
} StrongReferenceSetIndexHeader;

The _identification field of StronReferenceSetIndexEntry is the value of the property on the
contained objects with property id _identificationPid. Each _identification in the
StrongReferenceSetIndexEntry structs that follows is _identificationSize bytes in size.

8.5.3.5.4 Structure of a Strong Object Reference Set Index Entry
typedef struct StrongReferenceSetIndexEntry {
 UInt32 _localKey;
 UInt32 _referenceCount;
 <variable> _identification;
} StrongReferenceSetIndexEntry;

The _referenceCount is the count of weak references to this object. The type of the _identification
field varies from one instance of a StrongReferenceSet to another. The value of the _identification field
uniquely identifies this object within the set. It is the search key.

8.5.3.6 Weak Object Reference

8.5.3.6.1 Purpose
A weak object reference is a persistent data type that denotes a weak reference to a uniquely identified object. In
memory, weak references are similar to pointers. When persisted, weak references contain the unique identifier of the
referenced object.

8.5.3.6.2 External representation
Stored form SF_WEAK_OBJECT_REFERENCE

8.5.3.6.3 Structure of a Weak Object Reference
typedef struct WeakObjectReference {
 UInt32 _referencedPropertyIndex;
 UInt32 _identificationPid;
 UInt32 _identificationSize;
 <variable> _identification;
} WeakObjectReference;

The _referencedPropertyIndex is the index into the referenced property table of the name of the property (a
strong reference set) containing the referenced object. The type of the _identification field varies from one

AAF Object Manager Design Specification Page 41
June 4, 2001 Avid Technology 1.1

instance of a WeakObjectReference to another. The _identification field uniquely identifies the object
within the target set.

8.5.3.7 Weak Object Reference Vector

8.5.3.7.1 Purpose
An ordered collection of weak references.

8.5.3.7.2 External representation
Stored Form SF_WEAK_OBJECT_REFERENCE_VECTOR
Property value name of vector
Vector index name <name of vector> index

8.5.3.7.3 Structure of a Weak Reference Vector Index Header

typedef struct WeakReferenceVectorIndexHeader {
 UInt32 _entryCount;
 UInt32 _referencedPropertyIndex;
 UInt32 _identificationPid;
 UInt32 _identificationSize;
} WeakReferenceVectorIndexHeader;

8.5.3.7.4 Structure of a Weak Object Reference Vector Index Entry

typedef struct WeakReferenceVectorIndexEntry {
 <variable> _identification;
} WeakReferenceVectorIndexEntry;

8.5.3.8 Weak Object Reference Set

8.5.3.8.1 Purpose
An unordered collection of weakly referenced (not contained) uniquely identified objects, each of which can be
• efficiently located by key - O(lg N)

8.5.3.8.2 External Representation
Search key obtained from "object->identifier()"
Stored form SF_WEAK_OBJECT_REFERENCE_SET
Property value name of set
Set index name <name of set> index

8.5.3.8.3 Structure of a Weak Object Reference Set Index Header

typedef struct WeakReferenceSetIndexHeader {
 ... same as WeakReferenceVectorIndexHeader ...
} WeakReferenceSetIndexHeader;

AAF Object Manager Design Specification Page 42
June 4, 2001 Avid Technology 1.1

8.5.3.8.4 Structure of a Weak Object Reference Set Index Entry

typedef struct WeakReferenceSetIndexEntry {
 ... same as WeakReferenceVectorIndexEntry ...
} WeakReferenceSetIndexEntry;

8.5.3.9 Stored Object Identification

8.5.3.9.1 Purpose
The purpose of this stored form is to
• avoid storing an additional copy of information. The stored object identification is logically a property but is

physically stored as the IStorage class identifier for the IStorage that represents the object.
• treat object properties uniformly
The property value is the "IStorage class identifier". This value is set using IStorage::SetClass() and obtained with
IStorage::Stat().
The meaning of a stored object identification (SF_WEAK_REFERENCE_STORED_OBJECT_ID) is the same as
that of a weak reference (SF_WEAK_OBJECT_REFERENCE) except that the unique identifier of the referenced
object (The defining instance of ClassDefintion) is persisted differently.

8.5.3.9.2 External representation
Stored Form SF_WEAK_REFERENCE_STORED_OBJECT_ID

8.5.3.10 Unique Object Identification

8.5.3.10.1 Purpose
The purpose of this stored form is to
• avoid storing an additional copy of information. The unique object identification is logically a property but is

physically stored in the index of the collection of which the object is a member so that the collection may be
searched without having to load objects.

• treat object properties uniformly
More [TBS.]

8.5.3.10.2 External Representation
Stored form SF_UNIQUE_OBJECT_ID

8.5.3.11 Opaque Stream

8.5.3.11.1 Purpose
The property value is a small (size is such that fit easily into memory) data stream. The contents of the data stream
are opaque to the Object Manager. Items of this type are not a part of the AAF object model. This stored form is
intended for use by Object Manager clients in defining such "standard" Structured Storage elements as the
"DocumentSummaryInformation" stream.

8.5.3.11.2 External Representation
Stored Form SF_OPAQUE_STREAM

8.5.4 The Referenced-Properties Table

A weak object reference consists of
• the AUID that uniquely identifies the referenced object
• the name of the property that contains the referenced object.
The reference contains the name of the property that contains the referenced object in order to avoid having to search
through all uniquely identified objects or having to build a data structure whose size scales linearly with the number
of weakly referenced objects to support resolution of weak references.

AAF Object Manager Design Specification Page 43
June 4, 2001 Avid Technology 1.1

In order to avoid storing the actual name of the referenced property in each weak reference the name is stored once,
in the referenced-properties table, and the index of the name in the table is stored in the weak reference.
There is one referenced-properties table in each AAF file. The referenced-properties table is a stream called
“/referenced rroperties”. The stream consists of a header followed by a string space. The _size field of
the header gives the size in bytes of the string space. The total size of the referenced-properties stream is _size +
sizeof(ReferencedPropertiesTableHeader), that is, _size + 16 bytes.
8.5.4.1 The Referenced-Properties Table Header

typedef struct ReferencedPropertiesTableHeader {
 UInt32 _count;
 UInt32 _size;
} ReferencedPropertiesTableHeader;

The _count field holds the number of referenced-properties in the table. The _size field is the total size, in
bytes, of the string space that follows.

8.5.4.2 The Referenced-Properties Table String Space

The referenced-properties table string space is a sequence of null terminated characters strings each string names a
referenced property. The first string in the string space has index 0 in the referenced-properties table and so on.
8.5.4.3 The Referenced-Properties Table Validity constraints

The string space must contain exactly _count bytes that have the value 0. The length of the referenced-properties
stream must be _size + 16. Each of the strings in the string space must be unique. That is, no two strings may be
the same. Each of the strings in the string space must be used by some weak reference.
8.5.4.4 Scalability of the Referenced-Properties Table.

There are as many entries in the referenced-properties table as there are properties that contain weakly referenced
objects. For example, there is only one entry in the referenced-properties table for
/Dictionary/ClassDefinitions even though there are many weak references to class definitions.

8.5.5 General Design Principles

1) The value of a weak reference is a pointer to the referenced object
2) An object may be loaded when either

a) the one and only strong reference to the object is followed
b) any weak reference to the object is followed

3) Only certain classes may be weakly referenced. Such objects are uniquely identified by UID. The unique
identifier is used (as a key) to
a) identify the object that is the target of a weak reference
b) identify the object within the collection in which it resides
c) identify the object within internal Object Manager data structures

4) By definition set elements are uniquely identified.
5) Elements in a strong reference set and in a unique strong reference vector are unique within their respective

containers by the definition of strong reference - there can be only one strong reference to a given object. This is
equivalent to "pointer identity".

6) Elements in a strong reference set and in a unique strong reference vector are unique within their respective
containers by GUID. That is, the GUID is used as a key.

7) There is no SF_UNIQUE_WEAK_OBJECT_REFERENCE_VECTOR since weak references may not
themselves be the target of other weak references.

8) Weakly referencable objects have persisted reference counts. The reference count is persisted so that the
reachability (or liveness) of a given object may be determined without having to load objects to find all
references

9) The reference count is persisted in such a way that it can be manipulated without loading the object
10) Only objects with a non-zero weak reference count are persisted. This is the basis of implementing notions such

as "the dictionary contains only those definitions that are used in the file."
11) All of the weak references within the same collection (weak reference set or weak reference vector) refer to

objects in the same target collection (strong reference set or unique strong reference vector)

AAF Object Manager Design Specification Page 44
June 4, 2001 Avid Technology 1.1

12) A mechanism will be provided to allow uniform iteration over all collections set/vector, strong/weak
unique/not unique

13) For uniquely identified objects the unique identifier is persisted separately from the object that it identifies.
This allows
a) building a binary search tree of objects without actually loading the objects from the file
b) determining if an object is present in a collection without causing objects to be loaded

14) There is no SF_UNIQUE_STRONG_REFERENCE since, in the current AAF object model there is no case in
which a single contained object is the target of a weak reference.

15) There is no SF_UNIQUE_STRONG_OBJECT_REFERENCE_SET since by definition the members of a set
are unique.

8.5.6 Extra Design Flexibility

This section describes some extra flexibility built into the low-level AAF stored format/Object Manager design and
that may be exploited in the future. This extra flexibility comes at a relatively small incremental (space and time)
cost and may provide some extra room for maneuver later.

8.5.6.1 Per-Object Byte Order

Although the AAF requirements state that all objects in a file are stored with the same byte order, the byte order is
specified on a per-object basis. This means that AAF could allow files containing a mixture of objects with different
byte orders if needed. This could make for faster edit in place of foreign files.

8.5.6.2 Per-Object Format Version

The stored format is versioned and the version is specified on a per-object basis. This means that objects of different
stored format versions could be allowed in the same file. This may have pay-back when, for example, both AAF
version 1.0 and AAF version 2.0 are in the field and a read-modify-write operation is performed on a version 1.0
file using a version 2.0 implementation. In this case the unmodified version 1.0 objects in the file would not have
to be converted to version 2.0 format.

8.5.7 Meta-data Byte Order

Although the AAF requirements for file byte order need not apply to the Object Manager meta-data, this design
chooses to apply the same rules. These are, in summary
1) When a file is created, the meta-data within it is created with the byte order of the host
2) When a file is modified the existing byte ordering of the meta-data is preserved
One consequence of these rules is that all property indexes in a given file have the same byte order.

8.5.8 Storage Overhead

There are currently the following categories of property each having a different mapping to structured storage.

Property Stored Form Meaning
SF_DATA an ordinary property
SF_STRONG_OBJECT_REFERENCE a contained object
SF_STRONG_OBJECT_REFERENCE_VECTOR a vector of contained objects
SF_WEAK_OBJECT_REFERENCE a reference to an object
SF_DATA_STREAM media data
SF_WEAK_OBJECT_REFERENCE_VECTOR a vector of references to objects

8.5.8.1 General storage overhead

1) every object consists of
a) an IStorage
b) an IStream for all of the SF_DATA properties in that object called "property values"
c) an IStream for the property index called "property index"

AAF Object Manager Design Specification Page 45
June 4, 2001 Avid Technology 1.1

2) each property index has a fixed overhead of 10 bytes for the index header
a) byte order = 2 bytes
b) version = 4 bytes
c) number of properties = 4 bytes

3) each property index entry is 16 bytes in size
a) property id (identifies the property within the class of this object) = 4 bytes
b) property stored form (SF_ value) = 4 bytes
c) offset of the property value in the "property values" stream = 4 bytes
d) length of the property value in the "property values" stream = 4 bytes

4) each SF_STRONG_OBJECT_REFERENCE_VECTOR has an overhead of
a) an IStream for the vector index

5) each vector index has a fixed overhead of 8 bytes for the index header
a) high water mark = 4 bytes
b) number of elements= 4 bytes

6) each vector index entry is 4 byes in size
a) local key of element= 4 bytes

7) each SF_STRONG_OBJECT_REFERENCE_SET has an overhead of
a) an IStream for the set index

8) each set index has a fixed overhead of 8 bytes for the index header
a) high water mark = 4 bytes
b) number of elements= 4 bytes

9) each set index entry is 4 byes in size
a) local key of element= 4 bytes
b) unique identifier (key) of element (an AUID) = 16 bytes

8.5.8.2 Storage overhead for each property category

Object Manager Stored Form Overhead
SF_DATA one property index entry
SF_STRONG_OBJECT_REFERENCE one property index entry
SF_STRONG_OBJECT_REFERENCE_VECTOR one property index entry + one vector index
SF_WEAK_OBJECT_REFERENCE one property index entry
SF_DATA_STREAM one property index entry + one IStream
SF_WEAK_OBJECT_REFERENCE_VECTOR TBD (will probably be one AUID, 16 bytes per reference)
8.5.8.3 Some formulas

Size of property index stream = 10 + (number of properties * 16)
Size of vector index.= 8 + (number of elements * 4)
8.5.8.4 Storage Optimizations

There are two storage optimizations planned for the Object Manager not listed above. The optimizations are

1) If a property value is smaller than the index overhead for the property value then the property value is stored in
the index itself. Property values stored this way are called immediate values. An index entry is 16 bytes of
which 8 bytes (4 bytes for the property id and 4 bytes for the property stored from) are still needed for
immediate values. This means property values 8 bytes in size or smaller may be stored as immediate values.
This optimization is only possible for property values whose size is implied by their type. As a consequence,
this optimization is only possible for fixed size property values. A property stored form of
SF_IMMEDIATE_DATA identifies immediate values. If all the properties of an object are immediate there is
no "property values" stream only a "property index stream".

2) If the sum of the size of the "property values" stream and the size of the "property index" stream is less than the
minimum stream size then both the property index and the property values are stored in the same stream. The
minimum stream size is reportedly 128 bytes. The stream is organized such that the property values follow the
property index. Such a combined stream is named "property index" in which case there is no "property values"

AAF Object Manager Design Specification Page 46
June 4, 2001 Avid Technology 1.1

stream. This means that all AAF file consumers may begin by opening the "property index" stream, which will
always be present.

These two optimizations, which may of course be combined in the same object, will result in a best case object
representation of one IStorage and one IStream.

We choose not to make these optimizations mandatory in order to support "edit in place" in which case changes
might cause an objects representation to flip in and out of the optimized state. Instead we make the optimizations
optional and provide separate mechanisms for casting an object in its canonical form.

Since these optimizations are not mandatory they introduce the possibility of alternate valid representations for the
same object. (This possibility is also introduced during "edit in place" as such modifications may introduce
garbage). Object can be transformed to their canonical representation by copy() or move() operations.

In addition, the sizes of the fields in the data structures listed in section 8.4.3 are subject to change during
development based on measurements of real AAF files. For example the current definitions allow a 4Gb maximum
total size of property data (not counting media data) on a single object; this may be excessive.

8.5.9 Property Ids

The general form of a property id name is PID_<ClassName>_<PropertyName>. Some examples of property ids are
-
1) PID_Component_DataDefinition
2) PID_Component_Length
3) PID_Sequence_Components

8.5.10 Stored Class Ids

This note documents the mapping between SMPTE unique identifiers and AUIDs.
SMPTE has allocated a portion of a 16 byte namespace to AAF. The octets (bytes) are numbered from most to least
significant. Identifiers from this namespace are of the following form ...

SMPTE identifier
Octet # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octet Value 06 0E 2B 34 01 01 01 XX XX XX XX XX XX XX XX XX

where XX denotes octets within the namespace that the definers of AAF are free to allocate. These octets have been
allocated in the spreadsheet as follows.

SMPTE identifier
Octet # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octet Value 06 0E 2B 34 01 01 01 $A $B $C $D $E $F $G $H $I

Where $A - $I represent the spreadsheet columns A - I. Note that spreadsheet column A is always 04.

To transform this into a AUID that we know won't collide with any other GUID we simply exchange octets 0-7
with octets 8-15. This works because GUIDs with the most significant bit of octet 8 set to 0 are reserved but will
never be allocated by the body that reserved them ! This gives ...

AUID
Octet # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octet Value $B $C $D $E $F $G $H $I 06 0E 2B 34 01 01 01 $A

AAF Object Manager Design Specification Page 47
June 4, 2001 Avid Technology 1.1

Given that $A is always 04 this results in the following mapping from the spreadsheet to an AUID ...

AUID
Octet # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octet Value $B $C $D $E $F $G $H $I 06 0E 2B 34 01 01 01 04

An AUID is defined using the DEFINE_AUID() macro as follows ($A - $I represent spreadsheet columns A-I)…

DEFINE_AUID(name,
 0xBCDE,
 0xFG, 0xHI,
 0x06, 0x0E, 0x2B, 0x34, 0x01, 0x01, 0x01, 0x$A)

8.5.10.1 Example

This example shows the spread sheet entry, the SMPTE identifier, the AUID and the initialization code for the class
AAFIdentification.

Spread sheet entry for AAFIdentification
Spreadsheet column $A $B $C $D $E $F $G $H $I
 Column value 04 06 49 00 00 00 00 00 00

SMPTE identifier for AAFIdentification
Octet # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octet Value 06 0E 2B 34 01 01 01 04 06 49 00 00 00 00 00 00

AUID for AAFIdentification
Octet # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octet Value 06 49 00 00 00 00 00 00 06 0E 2B 34 01 01 01 04

The AUID for the class AAFIdentification would be declared (or defined – depending on the currently effective
definition of the macro DEFINE_AUID) as follows …

DEFINE_AUID(AUID_AAFIdentification,
 0x06490000,
 0x0000, 0x0000,
 0x06, 0x0E, 0x2B, 0x34, 0x01, 0x01, 0x01, 0x04)

8.5.11 Code class ids vs. Stored class ids.

8.5.11.1 Requirements and motivation

AAF admits the possibility of alternate implementations than the reference implementation. This means that the
implementation of AAF that reads a file may not be the same implementation of AAF that wrote the file.
It is a requirement of interchange that AAF objects produced by different implementations be identified in the same
way. In other words, an AAFSourceClip is always identified in an AAF file in the same way, regardless of which
implementation of AAF created the file. An AAF object produced by one implementation should be identified in an
AAF file in exactly the same way as a logically identical object produced by another implementation.
Since end users will purchase applications from different vendors that use different implementations of AAF and
expect those applications to interoperate via AAF files we need to allow more than one implementation of AAF to
exist on the same system.

AAF Object Manager Design Specification Page 48
June 4, 2001 Avid Technology 1.1

8.5.11.2 Consequences

Taken together these factors result in a design in which the notion of a stored class id is different from the notion of
a code class id.

8.5.11.2.1 Stored class ids
Stored class ids identify the class of an AAF object and, for a given AAF class, are the same across all
implementations of AAF. Stored class ids are represented in the AAF object model by the ObjClass property of the
AAFInterchangeObject class.

8.5.11.2.2 Code class ids
Code class ids identify a class from a particular implementation of AAF. Each implementation is free to choose its
own mapping from stored class id to code class id when reading an AAF file (The simplest mapping is 1:1 with
the implementation providing a different class to handle each stored class id). Note that code class ids are equivalent
to COM class ids. COM class ids may be stored in a structured storage IStorage using IStorage::SetClass() and
retrieved using IStorage::Stat(). Structured storage always allocates space in the IStorage for a code class id whether
or not anything is actually stored there.

8.5.11.3 Design Details

The following sections detail the design as manifest in the stored format and in the reference implementation code.

8.5.11.3.1 Stored Format Design Details
a) Only stored class ids are stored in an AAF file.
b) Code class ids are never stored in an AAF file.
c) To conserve space the stored class ids are stored in the IStorage representing the stored object using

IStorage::SetClass() and retrieved using IStorage::Stat(). i.e the proposal is to put the stored class id in the
place already allocated but more usually used for code class ids.

8.5.11.3.2 Reference Implementation Code Design Details
a) Each AAF class is assigned a stored class id, these ids are the same for all AAF implementations.
b) Each AAF class in the reference implementation is assigned a code class id, these ids are specific to the

reference implementation.
c) The stored class id is available from any AAF object via the AAFInterchangeObject::GetObjectClass() method.
d) When an object is persisted AAFInterchangeObject::GetObjectClass() (or equivalent) is called to obtain the

objects stored class id. This stored class id is written to the structured storage IStorage respesenting the object
using IStorage::SetClass().

e) When an object is "unpersisted" its stored class id is retrieved from the AAF file using IStorage::Stat(). The
stored class id is mapped to a code class id (via the AAFDictionary) so that an object instance appropriate to
the reference implementation can be created. Ultimately a call is made to CoCreateInstance() passing in the code
class id.

8.5.11.4 Design Discussion

The following sections explore some some of the consequences of this design.

8.5.11.4.1 Putting the stored class id where the code class id should go
Although stored class ids are a distinct concept from code class ids the proposal is to store them in the place
normally reserved for code class ids (COM class ids). This proposal saves 16 bytes per object. There are some risks
associated with this
1) the risk of confusing stored class ids with code class ids
2) an attempt may be made to call OLELoad() or CreateInstanceFromIStorage() on an IStorage in an AAF file.

These should and will fail but will they fail with an error code different than if nothing at all were stored in the
IStorage ?

8.5.11.4.2 Is This the Usual COM Practice?
It may be argued that this proposal is not in accordance with usual COM practice. That is true. However, this is not
intrinsic to this proposal but instead follows from the need to allow alternative implementations of AAF.

AAF Object Manager Design Specification Page 49
June 4, 2001 Avid Technology 1.1

[TBS quote from Microsoft dicumentation that says that the field in the IStorage is an “indication” of the owning
class.]

8.5.11.5 Design Alternatives

The following design alternatives were considered.

8.5.11.5.1 Use an Explicit Property for the Stored Object Id
Don't put any id in the IStorage, instead represent the stored class id as an explicit property. This costs 16 bytes for
the stored class id plus 16 bytes overhead in the property index. This also means that the code reading the file has
to read the property index for an object before it can create that object. It also raises the issue of where in the index
this "special" property is stored. The benefit of this is that stored class ids can't be as easily confused with code
class ids since IStorage::Stat() will always return a null code class id.

8.5.11.5.2 Use a File Local Identifier
Don't store a guid at all, but instead save space by storing a small integer in each object (or in the IStorage) that is
mapped to a stored class id. For extension classes that mapping is accomplished by a lookup table (or similar data
structure) that is also stored in the file (as part of the dictionary).
For extension classes the small integer has meaning only within a given file. That is, a different small integer may
be assigned if the object is copied to another file. Of course in the new file the newly assigned small integer will
map to the same stored class id.
For predefined classes the mapping is not persisted (just as for all other predefined dictionary entries) and predefined
classes are always assigned the same small integer.
This is essentially the same as my proposal for uniquely identifying properties without having to consume vast
amounts of space by storing a guid with each property.

8.5.12 Canonical Forms

The definition of the stored format presented here allows multiple respresentations of the same object. The multiple
representations arise for the following reasons –

1) There is no defined order for the properties of an object.

2) The property values in the property values stream need not be in the order specified in the property index.

3) The property values in the property values stream need not be contiguous. That is there may be gaps between
the values. This could arise, for example, if a value has been edited in place and shortened leaving a gap.

4) An optimization allows the property index and the property values to be stored in the same stream. This
optimization may or may not be applied to a particular object.

5) An optimization allows small property values to be stored in the property index. This optimization may or may
not be applied to a particular object.

This specification does not impose a canonical or preferred representation of persisted AAF objects. The Object
Manager must be prepared to accept all of the above variations on input. On output of a modified object the Object
Manager is not required to alter the representation of unchanged properties in order to create a canonical
representation of the object. When an object is first written to persistent store, for example as the result of a copy
operation, the Object Manager will create the object using the most compact representation possible. This enables
the creation of a simple application that reduces AAF files to their smallest possible size by simply copying all of
the contained objects.

8.5.13 Garbage Collection

Since the Object Manager supports edit in place, and since no canonical representation of objects is imposed,
garbage, or unused and unreachable space, may accumulate in the property value stream. Such unused and
unreachable space is permitted in an AAF file. The garbage is reclaimed when the object is copied. Such reclamation
would therefore also be achieved by the simple file compacting application mentioned above.

AAF Object Manager Design Specification Page 50
June 4, 2001 Avid Technology 1.1

8.5.14 Using This Mapping to Implement IPersistStorage

When using COM/OLE an object must be completely initialized by a call to its implementation of
IPersistStorage::Load. In this proposal the initial state for an object is found in more than a single IStorage. The
AAF Class dictionary may also contain part of the initial state for an object. A utility function similar to OLELoad,
say AAFLoad, could be provided. The implementation of AAFLoad would have to
1. Read the class id from the IStorage representing the persisted object.
2. Consult the AAF class dictionary to find the creation function to use to create objects of that class.
3. Call the creation function.
4. Call IPersistStorage::Load which would create a partially initialized instance of the object.
5. Call the newly created objects “initialize” method, passing in a reference to the class dictionary. This method

would complete initialization of the object by referring to the class dictionary, for example, to turn type ids
into the corresponding AAFDefinition objects.

Note that once AAFLoad has completed the object is not entirely loaded into memory since the loading of some
properties may have been deferred because of lazy loading.

8.5.15 Storage and Stream Names

This section describes the naming convention adopted for naming IStorages and IStreams with in a structured
storage file. The rules are as follows:

1) The root IStorage is called “/” and is the stored representation of the AAFHeader object.

2) An IStorage that represents a contained object is given the name of the property that it represents. For example,
the AAFHeader object contains an AAFDictionary object with property name “Dictionary” so the name of the
IStorage containing the stored representation of the AAFDictionary is “/Dictionary”.

3) All objects also contain an index to their properties. This index is stored in an IStream called “property index”.
Continuing the example, the property index IStream for the AAFDictionary is called “/Dictionary/property
index”.

4) If an object contains properties that are not themselves objects then the values of those properties are stored in
an IStream called “property values”. Continuing the example, the property value IStream for the
AAFDictionary is called “/Dictionary/property values”

5) If an object contains a strong reference vector (vector of contained objects) then the object will contain an index
for the vector stored in an IStream called “<VectorPropertyName> index”. Elements of the vector are stored
IStorages called “<VectorPropertyName>{<element name>}”. Continuing the example, since the
AAFDictionary contains a strong reference property called “ClassDefinitions” consisting of
AAFClassDefinition objects the vector index stream will be called “/Dictionary/ClassDefinitions index”. Since
each element in the vector is an object the vector elements will be stored in IStorages named
“/Dictionary/ClassDefinitions{<element name>}”. Where <element name> is a hexadecimal name that
identifies the element and is chosen such that elements don’t have to be renamed if insertions or deletions are
made to the vector. A vector index is mapped to its corresponding name by the vector index. There is not
currently a need to map from a name back to the corresponding index. However, this stored format design does
not preclude adding this in the future.

6) If an object contains a restricted weak reference vector (vector of referenced objects). [TBS. This section will
contain a description of the stored representation of restricted weak reference vectors.]

8.5.16 Storage of Object References and Object Reference Arrays

This section describes the details of how object references and object reference arrays are mapped to structured
storage.

AAF Object Manager Design Specification Page 51
June 4, 2001 Avid Technology 1.1

8.5.16.1 Strong References

Strong references denote containment. If an AAF object contains another AAF object the IStorage containing the
stored representation of the containing object has the IStorage containing the stored representation of the contained
object as a sub-storage.

8.5.16.2 Restricted Weak References

8.5.16.2.1 Restricted Weak References in the AAF Object Model
Instances of the following classes may be the target of weak references

1. Definition objects
• DataDefinition
• EffectDefinition
• ClassDefinition
• PropertyDefinition
• TypeDefinition

2. Mobs
• MasterMob
• CompositionMob
• SourceMob

3. Media
• MediaData

8.5.16.2.2 Representation of Restricted Weak References

A weak reference to an object instance is stored as an AUID (GUID). To follow a weak reference the AUID is
looked up in a per-class data structure that maps AUIDs onto object instances of that class. These data structures are
part of the AAF object model and their persisted representation is described in the “Advanced Authoring Format
Object Specification”. For example, to find the Mob referenced by a given AUID that AUID must be looked up in a
run-time data structure the persisted representation of which is “/Header/Content/Mobs”.1

8.5.16.2.3 Implementation of Restricted Weak References
[TBS. This section will describe the implementation of restricted weak references.]
8.5.16.3 General Weak References

The AAF object model does not require general weak references. This design does, however, take them into account.
General weak references could be added to this design in a straightforward manner if this becomes a future
requirement. One possible approach to implementing general weak references would be to construct and store the
path name of the referenced object. The path name for an object instance could be formed from the names of the
properties that must be traversed to reach that object instance starting at the root. These path names would be
similar to the path names in a file system. General object references would have to be made invalid if their target is
moved or deleted.

8.5.17 Standard Streams

[TBS. This section will describe how standard streams, such as “SummaryInformation”, are supported.]

8.5.18 Class Dictionary

[TBS. This section will describe how the AAFClassDictionary class and the related definition classes are mapped to
structured storage. The definition classes are

1 The notation “/Header/Content/Mobs” uses the IStorage and IStream naming convention described elsewhere in
this document. This convention generates path names for stored objects and properties from property names. The
property names are taken from the document “Proposed SMPTE Recommended Practice for Television –
Interchange of Video and Audio Material and Related Descriptive Information as Edit Decision Data”. This
document contains the most up-to-date description of the AAF stored object model.

AAF Object Manager Design Specification Page 52
June 4, 2001 Avid Technology 1.1

AAFDefinitionObject
AAFClassDefinition
AAFControlCodeDefinition
AAFDataDefinition
AAFEffectDefinition
AAFPropertyDefinition
AAFTypeDefinition]

8.5.19 Embedded Media

[TBS. This section will describe how embedded media is mapped to a structured storage file.]
8.5.20 Use Of Property Sets

[TBS. This design does not specify the use of property sets for representing stored objects. This section will
describe the rationale for this design decision.]
8.5.21 AAF File SMPTE Signature

Some notes on the header of a structured storage file
1) The StructureStorageHeader is always in Intel byte order
2) The version number is 3.62 on NT, Macintosh and in the reference implementation of Structured Storage on

Irix
3) StructuredStorageHeader._clid is null
4) A GUID may be written to StructuredStorageHeader._clid using fopen/fwrite
5) The presence of this GUID does not seem to affect StgIsStorageFile() or StgOpenStorage() et. al

All valid AAF files contain a SMPTE unique identifier in the StructuredStorageHeader._clid field.

The following GUID identifies a file as an AAF file It is
1) placed in the _clid field of the structured storage file header
2) 16 bytes in size
3) alway in Intel (little-endian) byte order (consistent with the rest of the structured storage file header) stored at

byte offset 8 from the start of the file immediately follows the 8 byte structured storage file signature

// SMPTE identifier

// 06 0E 2B 34 01 01 01 04 20 46 41 41 2E 31 20 30

//

// AUID

// 20 46 41 41 2E 31 20 30 06 0E 2B 34 01 01 01 04

//

DEFINE_AUID(AAFFileSignature,

 0x20464141,

 0x2E31, 0x2030,

 0x06, 0x0E, 0x2B, 0x34, 0x01, 0x01, 0x01, 0x04)

This GUID appears as follows when the file is dumped in ASCII.

$ dump foo.aaf

 0 d0 cf 11 e0 a1 b1 1a e1 41 41 46 20 31 2e 30 20 AAF 1.0

 16 06 0e 2b 34 01 01 01 04 3e 00 03 00 fe ff 09 00 ..+4....>.......

...

$

8.6 Object Naming
[TBS. This section will describe the support provided by the Object Manager for naming objects. Object naming is
used to support SMPTE Unique Labels (SULs) and SMPTE Unique Material Identifiers (UMIDs).]

AAF Object Manager Design Specification Page 53
June 4, 2001 Avid Technology 1.1

8.7 Lazy Loading and Memory Reclamation
In this design lazy loading and memory reclamation are integrated with object references.

8.7.1 Lazy Loading

When an object is first created in memory from its persistent form on disk, only the primitive attributes are read.

Resolved object references are initialized to refer to the appropriate in-memory object. Unresolved object references
are not initially followed in the hope that the object to which they refer will not be needed, hence the term “lazy
loading”. Instead, unresolved object references are followed on demand. Following an unresolved object reference
involves locating the referred to object in the object store, creating that object in memory and then initializing the
reference to refer to the in-memory object. Lazy loading allows us to avoid doing this work if the referred to object
is never needed. With respect to lazy loading, strong and weak object references are treated identically.

The Object Manager integrates lazy loading with object references. In this design an object reference may have the
following states.

1. Void: no object is referenced. Void references are never followed.

2. Unresolved, object not loaded: refers to an object in the persistent store, that object does not exist in memory.

3. Unresolved, object loaded: refers to an object in the persistent store, that object exists in memory. When a
reference in this state is followed it will be resolved to the in memory object. Note that when an object
reference is in this state, the in-memory and persistent store instances of the referenced object may have different
contents. This situation will occur if the in-memory object has been modified and has not yet been written out
to persistent store. That is, when the in-memory instance of the referenced object is dirty.

4. Resolved, object not loaded: In this state the reference is stale and the object is reloaded.

5. Resolved, object loaded: in this state the referenced object is in memory and no work is needed when the
reference is followed.

 Note that every time a reference is followed the object directory is consulted to determine whether or not the object
is loaded.

8.7.2 Memory Reclamation

Memory used by objects may be reclaimed once those objects have been written to persistent store. If this is
performed via an object reference then the state of the reference will transition from “resolved” to “unresolved, object
not loaded”. Note that this may cause other references to this object to transition from “resolved, object loaded” to
“resolved, object not loaded”.

Memory reclamation may be performed when

• immediately complying with a request to load an object would exhaust free store

• free store is exhausted

• on demand

• free store utilization has reached a predetermined limit

8.8 Transient Objects
Transient objects are not associated with an object store. The state of a transient object is not saved across
application invocations.

8.8.1 Rules for Combining Transient and Persistent Objects

1. Mixing objects from different object stores is not allowed.

2. A transient object may contain strong references only to other transient objects.

AAF Object Manager Design Specification Page 54
June 4, 2001 Avid Technology 1.1

3. A transient object may contain weak references to either transient or persistent objects. Note that this means that
a weak reference from a transient object will become invalid when the object store with which the referred to
object is associated is closed.

4. A persistent object may contain strong references only to other persistent objects associated with the same
object store.

5. A persistent object may contain weak references only to other persistent objects associated with the same object
store.

6. Inserting a transient object into a persistent container object makes that object and recursively all objects that it
references, persistent.

Transience is transitive over strong references. Persistence is transitive over both strong and weak references.

These rules are designed so that

1. Starting with a persistent object and recursively following all references, both strong and weak, one will
encounter only persistent objects.

2. Every persistent object is referred to by at least one strong reference.

These conditions are necessary for transient objects to coexist with a correct implementation of recursive persistence.
8.8.2 How These Rules Are Implemented

An object belongs to the same file as the object that contains it. In that way objects from different files cannot be
combined, and moving an object from one file to another can be accomplished by simple reattachment.

An object is transient if its containing object is transient, and persistent if its containing object is persistent. In that
way persistent and transient object cannot be incorrectly combined, and changing the state (persistent vs. transient)
of an object can be accomplished by simple reattachment.

8.9 Deleting Objects From an AAF File
[TBS. This section will describe how the Object Manager supports deleting objects from an AAF file.]

8.10 Copying Objects From One AAF File to Another
[TBS. This section will describe how the Object Manager supports copying objects from one AAF file to another.]

[Issues : Have to deal with 1) restricted weak references (including dictionary entries) 2) byte swapping if the source
and target have different endianness.]

8.11 Moving Objects From One AAF File to Another
[TBS. This section will describe how the Object Manager Supports moving objects from one AAF file to another.]

8.12 COM Reference Counting
Since a design goal of the Object Manager is for transparency, the Data Manager code must treat the objects
defined by the following two declarations identically…

ImplAAFComponent* _component1;
OMStrongReferenceProperty<ImplAAFComponent> _component2;

Since the COM rules require the Data Manager code to reference count _component1 the transparency
requirement means that the Data Manager code is also required to reference count _component2.

Transparency also requires that the Data Manager code must treat the objects defined by the following two
declarations identically…

ImplAAFComponent* _components1[SIZE];
OMStrongReferenceVectorProperty<ImplAAFComponent> _components2;

AAF Object Manager Design Specification Page 55
June 4, 2001 Avid Technology 1.1

Since the COM rules require the Data Manager code to reference count _components1 the transparency
requirement means that the Data Manager code is also required to reference count _components2.

Since correct reference counting mujst be implemented by the Data Manager, the Object Manager does no COM
reference counting, in fact it designed indepently of whether it is managing COM or non-COM objects.

8.13 Object Directory
The object directory is a data structure that efficiently maps keys onto values. Possible implementations include a
binary tree or a hash table. The key is an integer value, unique to a particular object directory that identifies a
particular object in the table. Operations available on the object directory include

• store a value under a given key

• retrieve the value associated with a given key

• remove the value associated with a given key

The value stores the following information under each key

• the location in memory where the object was loaded

• the storage location from which the object was loaded

• validity information - “is the object loaded ?”, reference counts

The object directory is a per AAF file data structure. Note that there is not necessarily an entry in the object
directory for each AAF object in a file. Entries are made in the directory as AAF objects are loaded. Entries are
removed from the directory when they are no longer needed, for example, when an object is deleted.

Object references are implemented as keys that are valid in the appropriate object dictionary.

[TBS. More detail on the object directory will be provided here.]

8.14 Schema Evolution
[TBS. This section will describe how the Object Manager will support schema evolution - changes to the AAF
object model and class hierarchy over time.]

8.15 Multiple Open AAF Files
[TBS. This section will describe how the Object Manager will support having more than one AAF file open at the
same time.]

8.16 Shared Access to AAF Files
This section describes the support provided by the Object Manager for shared access to AAF files. It addresses such
issues as the supported mixes of readers and writers. [TBS. Eventually this section will also address such issues as
multi-thread and multi-process access and remote access.]
It is currrently possible to have an AAF file open multiple times for read only, with no writers. If an AAF file is
open for write it may not be opened again either for read or for write. The longer-term intent is to also allow
multiple readers with one writer.
If a reader is allowed to accesses a file that is being changed the issue of consistency arises. The AAF goal is to
provide consistency at the object level. That is, the reader would see individual objects as they existed before or
after a given change but not during a change.
Note that this would not mean that the reader would have a consistent view of the file. For example, the writer may
delete an object, and all references to it, from the file but cannot do this atomically.
In order to provide object level consistency AAF file data (property values) and the AAF file meta-data (property
indexes, vector and set indexes) need to be updated atomically.
While Microsoft's implementation of structured storage does provied a transacted mode on Microsoft platforms it
does not do so on non-Microsoft platforms (Unix and Macintosh for example where the referenec implementation of
structured storage is used). This means we need to "roll our own" object level transactions within AAF.

8.17 Class Dictionary

AAF Object Manager Design Specification Page 56
June 4, 2001 Avid Technology 1.1

[TBS. This section will describe the design of the class dictionary component of the Object Manager.]

8.18 Object Lifetimes
[TBS. This section will describe the support provided by the Object Manager for managing object lifetimes through
the use of reference counts.]

8.19 Media Streaming
[TBS. This section will describe Object Manager support for media streaming an will address issues such as
structured storage stream alignment.]

8.20 Handling Failures
[TBS. This section will describe the detection and handling of errors within the Object Manager. It will also
describe how those errors are reported to the clients of the Object Manager.]

8.20.1 Out of Disk Space

This error condition is of particular concern if it occurs while holding dirty objects.

[More TBS]

8.20.2 Out of Free Store

If this error condition occurs while holding dirty objects it must be possible to save them to disk without needing
to consume additional free store.

[More TBS]

8.21 Testing
 [TBS. We want to create a design that can be tested, describe how the implementation will be tested.]

8.22 Debugging
 [TBS. We want to create a design that can be debugged, describe how the implementation will be debugged.]

8.23 Assertions
8.23.1 Overview Of Assertions

The AAF Object Manager makes extensive use of assertions. Monitoring of the assertions is enabled by the
compilation symbol OM_ENABLE_DEBUG. The debug configuration of the AAF reference implementation defines
this symbol.
The Object Manager bases its use of assertions on the concept of design by contract as described in Object Oriented
Software Construction 2nd Ed. (by Bertrand Meyer). See Chapter 11 “Design by Contract: Building Reliable
Software”.
8.23.1.1 Simple Assertions

[TBS. Describe simple assertions]
8.23.1.2 Routine Preconditions

[TBS. Describe routine preconditions]
8.23.1.3 Routine Postconditions

[TBS. Describe routine postconditions]
8.23.1.4 Routine Tracing

[TBS. Describe routine tracing]

AAF Object Manager Design Specification Page 57
June 4, 2001 Avid Technology 1.1

8.23.2 Assertion Violation Backstop

8.23.2.1 Overview

The Object Manager behavior on an assertion violation is customizable (at compile time) but the default behavior
on assertion violation is to throw an exception. However, such an exception cannot be allowed to propagate to the
client code, so an assertion violation backstop is implemented.

The elements of the design are…

• An AAF_INTERNAL_ERROR code is defined
• An OMAssertionViolation class is defined
• The OMAssertionViolation is private to the Object Manager
• The Object Manager throws an instance of OMAssertionViolation when an assertion violation occurrs
• The OMAssertionViolation exception is not caught; instead it is allowed to hit the backstop.
• The backstop code is in the dodo generated com-api files (e.g. CAAFHeader.cpp). The backstop code catches

the OMAssertionViolation exception and returns the AAF_INTERNAL_ERROR code.

8.23.2.2 Example Dodo Generated Code

class OMAssertionViolation; // Opaque

HRESULT STDMETHODCALLTYPE
 CAAFHeader::LookupMob (aafUID_t * pMobID, IAAFMob ** ppMob)
{
 HRESULT hr;
 ...
 ImplAAFMob * internalppMob = NULL;
 ImplAAFMob ** pinternalppMob = NULL;
 if (ppMob)
 {
 pinternalppMob = &internalppMob;
 }

 try {
 hr = ptr->LookupMob (pMobID, pinternalppMob);
 } catch (OMAssertionViolation&) {
 hr = AAF_INTERNAL_ERROR;
 }
 ...
 return hr;
}

9. Notes for Developers of Object Manager Client Code
This section contains notes useful for developers writing Object Manager client code. In particular it addresses
developers responsible for moving existing OMF code into the AAF Data Manager.

9.1 Cookbook for making Properties Persistent
This cookbook assumes you want to implement the (fictitious) class AAFFoo and already have the converted (from
OMFI) code for the class. Also see ImplAAFHeader.{cpp|h} and ImplAAFIdentification.{cpp|h}
for examples of classes where the properties have already been made persistent. You are also referred to section 6 of
the "AAF Object Manager Design Specification".

AAF Object Manager Design Specification Page 58
June 4, 2001 Avid Technology 1.1

Please note that, since some of the current Object Manager interfaces are still prototypes that

(a) This cookbook is not yet as simple as it should be.

(b) These instructions are subject to change - see tags of the form [CHANGE COMING:…].
9.1.1 Recipe (for the developer)

9.1.1.1 Use property declaration templates.

The following table illustrates the types to use.
SMPTE spec Type Object Manager

Simple scalar OMFixedSizeProperty<>
Simple struct OMFixedSizeProperty<>
Unicode string (wchar_t*) OMWideStringProperty
String OMStringProperty
Array OMArrayProperty<>

StrongRef Strong reference OMStrongReferenceProperty<>
StrongRefArray Strong reference vector OMStrongReferenceVectorProperty<>
StrongRefSet Strong reference set OMStrongReferenceSetProperty<>
WeakRef Weak reference OMWeakReferenceProperty<>
WeakRefArray Weak reference vector OMWeakReferenceVectorProperty<>
WeakRefSet Weak reference set OMWeakReferenceSetProperty<>

Note that OMArrayProperty<> is not yet implemented, please use OMFixedSizeProperty<> instead.
The Object Manager does not yet support the notion of sets and so OMStrongReferenceSetProperty<>
and OMWeakReferenceSetProperty<> are not yet implemented. Instead please use
OMStrongReferenceVectorProperty<> and OMWeakReferenceVectorProperty<>.
The Object Manager support for integrated weak references is not yet complete so please use
OMFixedSizeProperty<> instead.
These templates are designed to provide access to persistent properties equivalent to non-persistent properties. That
is, everything that may be done to foo1 (see below) may also be done to foo2 using exactly the same code. You
should not have to explicitly call member functions on OM*Property classes.

 Foo foo1;
 OMFixedSizeProperty<Foo> foo2;

Assuming that class AAFFoo has properties Apple and Pear.

 OMFixedSizeProperty<Apple> _apple;
 OMFixedSizeProperty<Pear> _pear;

Note that in
 OMStrongReferenceProperty<AAFoo> _f;
 AAFFoo* _g;

The entity _f and the entity _g behave identically except that the object designated by _f is persistent whereas the
one designated by _g is not.

Note also that the following are also equivalent except for persistence

OMStrongReferenceVectorProperty<AAFFoo> _v;
AAFoo* _w[SIZE];

AAF Object Manager Design Specification Page 59
June 4, 2001 Avid Technology 1.1

9.1.1.2 Define property ids

Give each property a small integer (PID or "property id") and a name to identify it.
The integers must be unique within a property set instance. Since derived classes share the same property set as their
base classes this means that the PIDs must be unique across a class and all of its base classes. If this rule is violated
you'll get an assertion failure like the following...

Precondition "Property not already installed" failed in routine
"OMPropertySet::put".

You can do a run time check by running the COMModTestAAF application.
The names should be constructed as follows PID_<className>_<propertyname> (Please use the property names
from the SMPTE spec as these reflect the most recent improvements to the AAF object model.)

 const int PID_FOO_APPLE = 3;
 const int PID_FOO_PEAR = 14;

9.1.1.3 Initialize the Properties

Each property should be initialized with a property id and a name. Use the property names as given in the object
specification.

 ImplAAFFoo::ImplAAFFoo()
 : _apple(PID_FOO_APPLE, "apple"),
 _pear(PID_FOO_PEAR, "pear")
 {
 ...

9.1.1.4 Initialize the Property Set (_persistentProperties)

 ImplAAFFoo::ImplAAFFoo()
 ...
 {
 _persistentProperties.put(_apple.address());
 _persistentProperties.put(_pear.address());
 }

The property set is called _persistentProperties and is inherited by all AAF classes from
OMStorable via ImplAAFObject.

9.1.2 Recipe (for the dodo tool)

9.1.2.1 Include the Appropriate Header Files

Dodo should have already done this for you. In your implementation header file, ImplAAFFoo.h, include
ImplAAFObject.h and OMProperty.h

9.1.2.2 Declare the Class to be Storable

Dodo should have already done this for you. Invoke the macro OMDECLARE_STORABLE() [defined in
OMStorable.h] in the public part of the Impl class declaration. Note that the macro invocation is not
terminated with a semi-colon.

 class ImplAAFFoo {
 public:
 ...
 OMDECLARE_STORABLE(ImplAAFFoo)

AAF Object Manager Design Specification Page 60
June 4, 2001 Avid Technology 1.1

 ...
 private:
 ...
 };

9.1.2.3 Define OMStorable Overrides

Dodo should have already done this for you. In the ImplAAFFoo.cpp file add the following...

 extern "C" const aafClassID_t CLSID_AAFFoo;

 OMDEFINE_STORABLE(ImplAAFFoo, CLSID_AAFFoo);

9.1.3 COM Reference Counting

9.1.3.1 An Example

The following is an example that defines a new type of segment that contains a single strong reference to a Foo
object (an ImplAAFFoo pointer) and a vector of strong references to Bar objects (an array of ImplAAFFoo
pointers). Both ImplAAFFoo and ImplAAFBar are subclasses of ImplAAFObject. The example illustrates the
reference counting requirements on the Data Manager code. Please note that this example code has not been
compiled.

The reference counting functions are AcquireReference(), ReleaseReference() and
ReferenceCount() for all classes derived from either ImplAAFRoot or AAFRoot.

Observing the protocol shown in this example has the following benefits

1. Obeys all the COM reference counting rules
2. Prevents objects that are not in memory from being lazily loaded just so that they can be released.
3. Enables the Object Manager to check for and complain about strongly referenced objects that are deleted.

The reference counting rules shown in this example are the same rules that would apply if the following alternate
declarations for _foo and _bars were used.

ImplAAFFoo* _foo;
ImplAAFBar* _bars[MAXSIZE];

9.1.3.1.1 Class Declaration

class ImplAAFFoo;
class ImplAAFBar;

class ImplAAFExample : public ImplAAFSegment
{
public:
 ImplAAFExample();

protected:
 ~ImplAAFExample();

public:
 void SetFoo(ImplAAFFoo* f);
 void GetFoo(ImplAAFFoo** f);

AAF Object Manager Design Specification Page 61
June 4, 2001 Avid Technology 1.1

 void AppendBar(ImplAAFBar* f);
 void GetBarAt(ImplAAFBar** f, aafUInt32 n);
 ImplAAFBar* FindBar(bool (FindProc*)(ImplAAFBar* b) findProc);
 void AppendNewBar(void);

private:
 OMStrongReferenceProperty<ImplAAFFoo> _foo;
 OMStrongReferenceVectorProperty<ImplAAFBar> _bars;

 };

9.1.3.1.2 Class Definition

ImplAAFExample:: ImplAAFExample() :
 _foo(PID_EXAMPLE_FOO, "foo"),
 _bars(PID_EXAMPLE_BARS,"bars")
{
}

ImplAAFExample::~ImplAAFExample()
{
 // Delete the contained Foo.
 ImplAAFFoo* oldFoo = _foo.setValue(0);
 if (oldFoo != 0)
 oldFoo->ReleaseReference();

 // Delete the contained array of Bars.
 size_t count = _bars.getSize();
 for (size_t i = 0; i < count; i++) {
 ImplAAFBar* oldBar = _bars.setValueAt(0, i);
 if (oldBar != 0)
 oldBar->ReleaseReference();
 }
}

void ImplAAFExample::SetFoo(ImplAAFFoo* f)
{
 ImplAAFFoo* oldFoo = _foo.setValue(f);
 if (oldFoo != 0)
 oldFoo->ReleaseReference();

 if (f != 0)
 f->AcquireReference();
}

void ImplAAFExample::GetFoo(ImplAAFFoo** f)
{
 *f = _foo;
 if (_foo != 0)
 _foo->AcquireReference();
}

AAF Object Manager Design Specification Page 62
June 4, 2001 Avid Technology 1.1

void ImplAAFExample::AppendBar(ImplAAFBar* b)
{
 if (b != 0) {
 _bars.appendValue(b);
 b->AcquireReference();
 }
}

void ImplAAFExample::GetBarAt(ImplAAFFoo** f, aafUInt32 n)
{
 ImplAAFBar* t = 0;

 _bars.getValueAt(t, n);
 *f = t;

 if (t != 0)
 t->AcquireReference();
}

ImplAAFBar* ImplAAFExample::FindBar(
 bool (FindProc*)(ImplAAFBar* b) findProc)
{
 ImplAAFBar* b = 0;
 size_t count = _bars.getSize();
 for (size_t i = 0; i < count; i++) {
 _bars.getValueAt(b, i);
 if (b != 0) {
 if (findProc(b)) {
 b->AcquireReference();
 return b;
 }
 }
 }
 return 0;
}

void ImplAAFExample::AppendNewBar(void)
{
 // To be supplied
}

9.1.4 Notes

When compiling make sure your include path specifies include/OM and src/OM. This is a temporary measure
the goal is to require that only include/OM be specified. The checked-in projects do this already. [CHANGE
COMING: In future the OM source files will be organized such that you'll only have to specify include/OM.]

9.2 Changing Property Types
Here are some things to remember if you either
1. change the definition of a type when there are persistent properties of that type or
2. change the type of a persistent property
An example of 1 would be a change in the definition of aafTimeStamp_t (as was done recently). The _lastModified
property of class AAFHeader is of type aafTimeStamp_t.

AAF Object Manager Design Specification Page 63
June 4, 2001 Avid Technology 1.1

A hypothetical example of 2 would be to change the declaration of the lastModified property of class AAFHeader
from

OMFixedSizeProperty<aafTimeStamp_t> _lastModified;

to

OMFixedSizeProperty<UGLY_SMPTE_HEXCodedTimeStamp_t> _lastModified;

The AAF Object Model, and as a consequence the Object Manager design and implementation, assumes that the
type of a property, identified by a given property id, does not change over time. Or put another way, the Object
Manager assumes that it can tell the type of a property data value stored in an AAF file from the associated stored
property id.

So if an AAF file is created with a PID (property id) that corresponds to a given type, errors will occur if that file is
read in by a toolkit compiled with a different definition of that type. Currently the error is detected only if the size
of the type is changed. If the type is changed but the size remains the same, values in "old" files will be silently
(and incorrectly) interpreted as values of the new type.

If you see the following error when you try to run either "ComAAFInfo" or "CppAAFInfo"

Assertion "Sizes match" failed in routine
"OMFixedSizeProperty<PropertyType>::restoreFrom".
The failure occurred at line 118 in file "../../../ref-
impl/src/OM\OMPropertyT.h".
The condition "size == _size" was violated.

You need to

1. run "ComClientTestAAF" to create a new Foo.aaf file
2. copy the newly created Foo.aaf file from AAFWinSDK/examples/com-api/ComClientTestAAF to

AAFWinSDK/examples/com-api/ComAAFInfo
3. run "ComAAFInfo" again - this time you shouldn't see the error message
4. repeat 1 - 3 for "CppClientTestAAF" and "CppAAFInfo"

This is currently only a development issue i.e. it occurs during development while the API is still evolving. We
will face a similar issue when we want to release a version 2.0 toolkit after users have created files with a version
1.0 toolkit.

During development I suggest we handle this problem by assigning a new PID to any properties whose type we
change. I'll add code to the OM so that, given a changed PID, the error will always be detected.

9.3 Persistent Objects, Attached Objects And Files
Sometimes in Data Manager code you may want to determine if a particular object is associated with an on disk
file (is persistent) , is attached to (owned by) another object or is contained within a file.
9.3.1 Determining if an Object is Owned by Another Object

An example of the need to determine if an object is owned by another object occurs in
ImplAAFSequence::AppendComponent(). This note also applies to the implementation of other append
methods in the Data Manager. Since an object may have only one owner all append functions should check to see
that the object they are being passed is not already owned. The function "bool OMStorable::attached()"
is used for this purpose. This function returns true if 'this' is an attached object, otherwise it returns false.
Here's what the Data Manager code should look like

AAF Object Manager Design Specification Page 64
June 4, 2001 Avid Technology 1.1

AAFRESULT STDMETHODCALLTYPE
 ImplAAFSequence::AppendComponent (ImplAAFComponent* pComponent)
{
 ...
 if (pComponent->attached())
 return AAFRESULT_OBJECT_ALREADY_ATTACHED;
 ...
}

If this check is omitted from the Data Manager code, the actual attempt to attach the object will fail with an
assertion violation. The assertion violation only occurs when assertions are enabled. Assertions are enabled in a
debug build, they are disabled in a release build.
Usually the Data Manager code wants to check that an object is not already attached but sometimes it may require
that an object be attached in this case the code is as follows.

if (!pComponent->attached())
 return AAFRESULT_OBJECT_NOT_ATTACHED;

9.3.2 Determining If An Object Is Contained Within A File

To determine if an object is within a file the Data manager should use code like the following…

if (!pObj->inFile())
 return AAFRESULT_OBJECT_NOT_IN_FILE;

9.3.3 Determining if an Object is Persistent

An example of the need to determine if an object is persistent occurs in the implementation of media access. Since
AAF does not support transient media, the media access code should check that the object on which media access is
being attempted is in fact persistent. The function "bool OMStorable::persistent()" is used for this
purpose. This function returns true if 'this' is a persistent object, otherwise it returns false. Here's an actual
example from the Data Manager code.

 AAFRESULT STDMETHODCALLTYPE
 ImplAAFEssenceData::Read (aafUInt32 bytes,
 aafDataBuffer_t buffer,
 aafUInt32 *bytesRead)
{
 ...
 // Cannot access the data property if it is NOT associated with a file.
 if (!persistent())
 return AAFRESULT_OBJECT_NOT_PERSISTENT;
 ...
}

If this check is omitted from the Data Manager code subsequent calls to the Object Manager to access media on
non-persistent (i.e. transient) objects will fail with an assertion violation. The assertion violation only occurs when
assertions are enabled. Assertions are enabled in a debug build, they are disabled in a release build.
9.3.4 Summary

OMStorable Function Precondition Error Code
attached() None OBJECT_NOT_ATTACHED
inFile() attached() OBJECT_NOT_IN_FILE

AAF Object Manager Design Specification Page 65
June 4, 2001 Avid Technology 1.1

persistent() inFile() OBJECT_NOT_PERSISTENT

The error codes listed are those for which a false result from the OMStorable functions denotes an error. The code
listed omits the AAFRESULT_ prefix.
9.3.5 Notes

1. For an object to be persistent it is necessarily in a file.
2. For an object to be in a file it is necessarily attached.
3. An object may be attached but not persistent.
4. An object may be attached but not in a file.

10. Performance, Capacity and Scalability Tests

10.1 Object capacity
10.1.1 purpose of test

Determine if there are any built-in capacity limits on the number of objects that can be created, held in memory
and/or stored in a file.
10.1.2 ideal behavior

No limits.
10.1.3 expected behavior

The structured storage limit of approximately 2k open objects.
10.1.4 planned optimization

Keep in memory objects closed, even if they are dirty, open each object before saving it and close it afterwards.
10.1.5 program

Creates a named file and creates a given number of objects and saves them in the file.
10.1.6 input data

None - created on the fly.
10.1.7 graph

None.

10.2 File open latency
10.2.1 purpose of test

Investigate how the time to open a file varies as the number of objects in the file increases.
10.2.2 ideal behavior

The file open time is independent O(1)] of the number of objects in the file.
10.2.3 expected behavior

Ideal.
10.2.4 planned optimization

None.
10.2.5 program

Opens a named file, times the open, then calls close.
10.2.6 input data

Several differently sized files each containing a known number of objects. The files should all have similar
structure.

AAF Object Manager Design Specification Page 66
June 4, 2001 Avid Technology 1.1

10.2.7 graph

X = number of objects, Y = file open time

10.3 File save latency (create)
10.3.1 purpose of test

Investigate how the time to save a file varies as the number of objects in the file increases.
10.3.2 ideal behavior

The file save time is a linear function [O(n)] of the total number of objects in the file.
10.3.3 expected behavior

Worse than ideal (some function of the total number of properties in the file).
10.3.4 planned optimization

Write whole objects instead of whole properties.
10.3.5 program

Creates a named file containing a given number of objects, saves the file and times the save, then calls close.
10.3.6 input data

None - created on the fly.
10.3.7 graph

a) X = number of objects, Y = file save time, and
b) X = number of propeties, Y = file save time

10.4 File save latency (modify)
10.4.1 purpose of test

Investigate how the time to save a file varies as the number of dirty objects in the file increases.
10.4.2 ideal behavior

The file save time is a linear function [O(n)] of the number of dirty objects in the file.
10.4.3 expected behavior

The file save time is a linear function [O(n)] of the total number of objects, clean and dirty, in the file.
10.4.4 planned optimization

Implement a dirty bit, write only dirty objects.
10.4.5 program

Creates a named file containing a given number of objects, saves the file (not timed). Next dirties a known number
of objects (say 25% of the total) by changing a property, calls save, times the save, then calls close.
10.4.6 input data

None - created on the fly.
10.4.7 graph

a) X = number of objects, Y = file save time and
b) X = number of dirty objects, Y = file save time

10.5 Vector/set scalability
10.5.1 purpose of test

Investigate how the following operations on vectors/sets vary as the number of objects in the vector/set increases.
• add a new object to the vector/set
• remove a given object from the vector/set
• find a given object in the vector/set

AAF Object Manager Design Specification Page 67
June 4, 2001 Avid Technology 1.1

• create large vector/set (many add operations)
10.5.2 ideal behavior

• TBS this should be a table with colums for vector and set
• add O(lg n)
• remove O(lg n)
• find O(lg n)
• create large O(n lg n)
10.5.3 expected behavior

For some operations - O(n) since linear searches are currently employed. Worse [O(n^2)] for "create large" where
growing currently includes copying of elements that are already present.
10.5.4 planned optimization

Mostly balanced binary tree (red-black tree) implementation of vectors/sets giving nearly ideal behavior. TBS can’t
use tree for vectors that aren’t sparse.
10.5.5 program

Create a large vector containing a specified number of object, measure this creation time. Time the add, remove and
find, operations. Repeat for other vector sizes.
10.5.6 input data

None - created on the fly.
10.5.7 graph

a) For op = (add, remove, find) X = number of objects in the vector/set, Y = time to perform op, and
b) X = number of objects, Y = time to create vector/set containing that number of objects.

10.6 Essence access (write)
10.6.1 purpose of test

Determine the rate at which essence data can be written to a file (bytes/second).
10.6.2 ideal behavior

Meets AAF requirement of ? bytes/second.
10.6.3 expected behavior

Too slow, since the implementation of structured storage currently in use doesn't support "unbuffered I/O".
10.6.4 planned optimization

Possibly use the "4k sector size" implementation of structured storage, however this is not backwardly compatible
with the current implementation of structured storage.
10.6.5 program

Generates plausible, but fake, essence data in memory and writes it to an aaf file measuring the output rate.
10.6.6 input data

None - created on the fly.
10.6.7 graph

None.

10.7 Essence access (write)
10.7.1 purpose of test

Determine the rate at which essence data can be read from a file (bytes/second).
10.7.2 ideal behavior

Meets AAF requirement of ? bytes/second.

AAF Object Manager Design Specification Page 68
June 4, 2001 Avid Technology 1.1

10.7.3 expected behavior

Too slow, since the implementation of structured storage currently in use doesn't support "unbuffered I/O".
10.7.4 planned optimization

Possibly use the "4k sector size" implementation of structured storage, however this is not backwardly compatible
with the current implementation of structured storage.
10.7.5 program

Reads essence data from a file and measures the input rate.
10.7.6 input data

Use the file(s) created by the essence access (write) test above.
10.7.7 graph

None.

11. Implementation Order

This section proposes an implementation order for the Object Manager functionality. The goal is to choose an order
that results in the shortest time to create an implementation that can read and write AAF files (not necessarily in
their final format).
1) Stubs only implementation

• Call all interfaces but no functionality
• Works on all supported platforms

2) File open/create and close
• Create a file or open an existing AAF file
• Cannot write or read objects

3) Write persistence - simple properties
• Create an instance of any registered AAF class and save (simple properties only) it to an AAF file

4) Read persistence - simple properties
• Read (simple properties only) an instance of any registered AAF class from a previously created AAF file
• Cannot modify the object

5) Read/write persistence - simple properties
• Read and write (simple properties only) an instance of any registered AAF class to and from an AAF file

6) Read/write persistence - strong references
• Read and write an instance of any registered AAF class (including strong references) to and from an AAF

file
7) Read/write persistence - strong reference vectors

• Read and write an instance of any registered AAF class (including strong reference vectors) to and from an
AAF file

8) Read/write persistence - weak references (restricted)
• Read and write an instance of any registered AAF class (including restricted weak references) to and from

an AAF file
9) Read/write persistence - media data

• Read and write an instance of any registered AAF class (including media data) to and from an AAF file
10) Read/modify/write (write all objects)

• Read an object from a file, modify a property, write all objects
11) Read/modify/write (write only changed objects)

• Read an object from a file, modify a property, write only the changed object
12) Read/modify/write (write only changed properties)

• Read an object from a file, modify a property, write only the changed property
13) Single file persistence

• Copy objects
• Move objects

AAF Object Manager Design Specification Page 69
June 4, 2001 Avid Technology 1.1

14) Lazy loading at the object level
• Load only those objects that are accessed

15) Lazy loading at the property level
• Load only those properties that are accessed

16) Transient objects
• Create transient objects (objects not associated with any file and that won't be persisted)
• Create a transient object and then insert it into a persistent collection object and have the object persisted
• Remove an object from a persistent collection object and have it become non-persistent (transient)

17) More than one file open at a time
• Have more than one file open at the same time
• Objects are persisted to and from the proper file
• Cannot copy of move objects from one file to another

18) Multi-file persistence - copy/move objects between files
• File to file object copy
• File to file object move

19) Persistence of objects to which optional properties have been added
• Define new properties for an existing class
• Write and read instances of that class

20) Persistence of instances of user defined classes - with no user defined behavior
• Define a new class
• Write and read instances of that class

21) Persistence of instances of user defined classes - with user defined behavior (extended classes)
• Define a new class, derived from a predefined AAF class, override a virtual function
• Have the user defined virtual function called by the AAF tool kit

22) Reading of instances of user defined classes without the creation code
• Write an instance of a user defined class from one application
• Read that instance in another application that does not have the object creation code

23) Memory reclamation (lazy unloading)
• [TBS.]

24) Storage optimizations
• [TBS.]

25) Garbage collection
• [TBS.]

26) Weak references (general)
• [TBS.]

27) Schema evolution
• [TBS.]

12. Glossary

AAF: Advanced Authoring Format.

AAF Class Dictionary: Same as AAF Dictionary.

AAF Dictionary: A data structure describing all AAF classes and their properties. Both predefined and user defined
classes are described in the AAF Dictionary.

Ancestor: [Definition TBS.]

API: Strictly - Applications Programming Interface, more loosely - Programming Interface.

Class Dictionary: Same as AAF Dictionary.

COM: Component Object Model.

AAF Object Manager Design Specification Page 70
June 4, 2001 Avid Technology 1.1

Container: Either container file on disk or container object. In this design - container object.

Descendant: [Definition TBS.]

Free store: Dynamically allocated memory, also called the heap.

Isomorphic persistence: An approach to object persistence in which the shape of the graph defined by the objects and
their object references is preserved. In implementation language terms, isomorphic persistence preserves pointer
identity.

IStorage: [Definition TBS.]

IStream: [Definition TBS.]

Object reference: The implementation of an association between objects. An object reference has both an in-memory
and an on-disk form. There are two kinds of object reference, strong and weak.

Object store: The place to which persistent objects are saved. A disk file. In the context of this document the term
object store is synonymous with AAF file.

Persistent object: Persistent objects are objects that are associated with an object store. The state of a persistent
object is saved across application invocations. Also known as linked objects.

Persistent store: Same as object store.

Primitive Type: For the purposes of this specification, any type not descended directly or indirectly from
AAFObject. Primitive types are the building blocks used to create other types.

Property: [Definition TBS.]

Recursive persistence: An approach to object persistence in which all of the objects associated with a given object
store may be found by starting at a root object and recursively following all references, both strong and weak.

Semantically valid: [Definition TBS.]

Stable times: Those times at which an object may be observed by other objects. The term "stable times" means
between, and not during updates. As an example, in a doubly linked list, the condition (next->previous == this),
which is one of the invariants that defines a doubly linked list, holds only at stable times. The condition does not
hold during the removal of an element.

Strong object reference: An object reference that implements the “contains” association. Strong object references
connote ownership. Since an object may have only one owner there may be, at most, only one strong reference to a
given object. Compare with weak object reference.

Structurally valid: [Definition TBS.]

TBS: To Be Supplied, To Be Specified.

Transient object: Transient objects are objects that are not associated with an object store. The state of a transient
object is not saved across application invocations. Also known as unlinked objects.

Weak object reference: An object reference that implements an association between objects. Weak object references
do not connote ownership. There may be zero or more weak reference to a given object. Compare with strong object
reference.

13. References

13.1 General References
• AAF Web site - http://www.AAFAssociation.org/
• OMF Web site - http://www.omfi.org

13.2 COM and Structured Storage
• “Inside Distributed COM”, Guy Eddon, Henry Eddon, 1998 Microsoft Press, ISBN1-57231-849-X
See pages 277-286 for an overview of structured storage. See also chapter 7 – “monikers and structured storage”.

http://www.aafassociation.org
http://www.omfi.org

AAF Object Manager Design Specification Page 71
June 4, 2001 Avid Technology 1.1

• “Inside OLE, 2nd Ed.”, Kraig Brockschmidt, 1995, Microsoft Press, ISBN 1-55615-843-2
See pages 35-38 for a very high level overview of structured storage. See the whole of chapter 7 for a detailed look
at structured storage.

• “Understanding ActiveX and OLE”, David Chappell, 1996, Microsoft Press, ISBN 1-57231-216-5
See chapter 5 “Persistence”.

• “Essential COM”, Don Box, 1998, Addison Wesley, ISBN 0-201-63446-5
See Chapter 2 “Interfaces” and in particular the section entitled “Resource Management and IUnknown” for a clear
description of the COM reference counting rules.

13.3 Object Oriented Software Engineering
• “Object Oriented Software Construction, 2nd Ed.”, Bertrand Meyer, 1997, Prentice Hall, ISBN 0-13-629155-4
See chapter 31 “Object Persistence and Databases”.

13.4 Object Databases
• “The Object Database Standard: ODMG 2.0”, R. G. G. Cattell and Douglas K. Barry (eds), 1997, Morgan

Kaufmann, ISBN 1-55860-463-4

13.5 Design Patterns
• “Design Patterns : Elements of Reusable Object Oriented Software”, Erich Gamma, Richard Helm, Ralph

Johnson and John Vlissides, 1994, Addison Wesley, ISBN 0-201-63361-2

13.6 Program Portability, Data Representation And Data Exchange
• “C – A Reference Manual”, Samuel P. Harbison and Guy L. Steele Jr., 1991, Prentice Hall, ISBN 0-13-

110933-2
See chapter 6 “Conversions and Representations”. In particular see section 6.1.2 “Byte Ordering” and section 6.1.3
“Alignment Restrictions”. See also chapter 5 “Types”.

• “A Retargetable C Compiler : Design and Implementation”, Christopher Fraser and David Hanson, 1995,
Benjamin/Cummings, ISBN 0-8053-1670-1

See chapter 11 “Declarations”. In particular see section 11.5 “Structure Specifiers”.

• “See MIPS Run”, Dominic Sweetman, 1999) Morgan Kaufmann, ISBN 1558604103

13.7 Data Structures
• "Introduction to Algorithms", Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, 1997 MIT Press

(McGraw-Hill). ISBN 0-262-03141-8
See chapter 14, page 263 for an excellent presentation of Red Black Trees.

• "The Modula-2 Software Component Library, Volume 3", Charles Lins, 1989 Springer-Verlag, ISBN 0-387-
97074-6

• "Algorithms + Data Structures = Programs", Niklaus Wirth, 1976, Prentice Hall, ISBN 0-13-022418-9
• "Algorithms and Data Structures", Nlklaus Wirth, 1986 Prentice Hall, ISBN 0-13-022005-1
• "The Design and Analysis of Computer Algorithms", Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,

1974 Addison Wesley, ISBN 0-201000029-6

AAF Object Manager Design Specification Page 72
June 4, 2001 Avid Technology 1.1

Related Documents

Document Name Location Owner Description

Proposed SMPTE Recommended Practice for
Television – Interchange of Video and Audio
Material and Related Descriptive Information as
Edit Decision Data

Josh Goldman A proposed SMPTE standard. Describes the
stored representation of the AAF object model.
This description is more up-to-date than the
“AAF Object Specification”.

AAF Object Specification AAF Web site Josh Goldman Describes the stored representation of the AAF
object model.

Microsoft Advanced Authoring File Format
Requirements Document

Microsoft

Microsoft Multimedia Task Force AAF
Requirements Addendum 1

Microsoft

AAF Object Management Oliver Morgan

AAF Toolkit Architecture Bob Tillman

AAF Plug In Issues Oliver Morgan

OMFI/Structured Storage Analysis Microsoft

OMF Interchange Specification Version 2.1 Josh Goldman

AAF Object Manager Design Specification Page 73
June 4, 2001 Avid Technology 1.1

14. Revision History

Name Date Version Description

Tim Bingham 5/26/98 0 Outline only

Tim Bingham 5/28/98 0.1 Start adding content (not published)

Tim Bingham 5/29/98 0.2 Add more content (not published)

Tim Bingham 6/1/98 0.3 Get ready for preliminary review (not published)

Tim Bingham 6/2/98 0.4 Preliminary review version (depth charge)

Tim Bingham 6/23/98 0.5 Incorporate review comments

Tim Bingham 7/13/98 0.6 Incorporate more review comments (not published)

Tim Bingham 7/27/98 0.7 Provide details of OM interfaces, more merging.

Tim Bingham 0.8 Add more detail on design of OM interfaces

Tim Bingham 3/10/99 0.9 Add and expand cookbook. Add more detail on property types. Add information on storage
overhead. Add more detail to “Class Interfaces” section. Add more detail, including data
structures, on mapping of AAF objects to structured storage. Add more references. Update and
expand the summary of requirements. Add information on mapping between SMPTE unique
identifiers and AUIDs. Record the resolution of all open issues.

Tim Bingham 3/10/99 1.0 Update and expand the summary of requirements. Remove review comments section, which was
previously included for historical reasons. Add section on AAF API file save semantics. Remove
section on possible implementations of AAFDictionary::createInstance(). Update some of the code
fragments. Add a reiteration of the rules for file byte order. Add missing requirements on byte
ordering, “foreign objects”, embedding and Object Manager interfaces. Update section on
semantics of AAFFile::Save(). Many small changes to improve consistency. More cookbook
improvements. Remove “dependencies on other AAF components” section since this material is
now all covered elsewhere in the document. General editorial clean up pass.

Tim Bingham 7/9/99 1.1 Move “Object Creation” to “Class Interfaces” section. Add description of OMType to “class
interfaces” section. Add information on COM reference counting to the design section. Added
“Reference Counting Cookbook” to “Developer Notes” section. Add section on the design of
optional property support. Expand references section. Add description of the “assertion violation
backstop” design. Use “type” for “data type” (of a property value) and “stored form” for the type
of on-disk representation used for the property value.

Tim Bingham 8/24/99 1.2 Added new section “Creating Objects and Meta Data Objects”.

Tim Bingham 9/22/99 1.3 Add new section on “Indirect, private, encrypted, opaque and KLV types”. Fill out section on
“Shared Access to AAF Files”. Added new section on “AAF File SMPTE Signature”. Added new
section on “File Mode Flags”. Add section on “Performance, Capacity and Scalability Tests”.

Tim Bingham 11/3/99 1.4 Add design information on strong reference sets and on weak references.

Tim Bingham 4/5/00 1.5 Update description of stored property set and collection (strong and weak reference vectors and
sets) indexes.

Tim Bingham 6/4/01 1.6 Prepare for release to Open Source.

	Introduction
	Design Overview
	Summary of Requirements
	Overview of Structured Storage
	Design Principles
	Class Interfaces
	Defining and Accessing Properties
	Saving and Restoring Property Values
	Persistent Property Class Hierarchy
	Creating Object Instances
	Type-specific Byte reordering, Internalization and Externalization

	Property Types
	Structural types
	Primitive Types
	Compositional Types
	Composed Types
	Summary of Property Types
	How Types are composed
	Mapping of Types to Structured Storage
	Indirect, private, encrypted, opaque and KLV types
	Name Equivalence

	Object Manager Design
	Object Manager Interfaces
	File Level Operations
	Persistence Infrastructure
	Optional Properties
	Mapping AAF Objects to Structured Storage
	Object Naming
	Lazy Loading and Memory Reclamation
	Transient Objects
	COM Reference Counting
	Object Directory
	Shared Access to AAF Files
	Assertions

	Notes for Developers of Object Manager Client Code
	Cookbook for making Properties Persistent
	Changing Property Types
	Persistent Objects, Attached Objects and Files

	Performance, capacity and Scalability Tests
	Object Capacity
	File Open Latency
	File Save Latency (create)
	File save latency (modify)
	Vector/set scalability
	Essence Access (write)

	Implementation Order
	Glossary
	References

