AAF Object Manager Design
Specification

Avid Technology
Revision 1.6

Author: Tim Bingham

June 4, 2001

Avid Technology

Contents

1. Introduction 9
2. Design Overview 9
3. Summary of Requirements 9
3.1 Direct Support of the AAF ODBJECt MOEL.......uiiiiiiii e 9
3.2 Persisting Objects and ObJeCt REFEIBNCES.uuuuuriiiiiiiiie i 9
3.3 Transparent Access t0 Persistent OB JeCtS.......ccceiiiiiiiiiiii e 9
3.4 Implicit Saving of INAIVIAdUAl OBJECTS.uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiib bbb eeeeeeeeeenee 9
3.5 EXPHCit SAVING OF AAF FIlES. oo e 9
3.6 Referential INtEgrity ..o e et e et e aen 9
3.7 Incremental File AcCesS (Lazy LOAAING) . ..uuuuiiiiiiiieeiiiiii e 10
IR T = 1 F= I 1 0] =T 1 1 Y2 PP 10
3.9 MUILIPIE OPEN AAF FlBS. i r e e e 10
310 LAZY LO@AING ettt ittt e e et et e aaeaae 10
3L TraNSIENT OB JECTS. .ottt e e 10
312 ObJeCt EXTENSIDIITY . ..oe e e e e 10
TN R O T o) (o] o F- I = (o] o =T ¢ A= T PP PTPUPPPTI 10
L4 EdIt N PIACE. .ottt s 10
3.15 Application Object Creation MOdel........oooviiiiiiiiii e 11
316 Forward CompatibDility..........e i e e 11
3.17 Backward CompatibDility.........ooooiiiiiiii 11
318 SHIUCTUTAL CECKING. ..e ittt e e e e et eeenees 11
319 AAF FIlE BYTE O .. ittt e e e e e e e eaens 11
3.20 AAF Files Contain Only AAF ObDJECES.....cciiiiiiii i e a e 11
3.21 AAF Files And Objects Are Not Embeddable........ccooovieiiiiiiiiiiiii e 11
3.22 Internal Interfaces TO The ODJECt MBNAGET.uu it e 11
3.23 External Interfaces TO The ODJECt MANAGET.iiiiti it 11
3.24 Admissibility Of Alternative Implementations Of AAF ..., 12
Bi25 FHIE Szt e 12
I I ¢ (=T 1 1Y 1 o] [T I8/ o 1= TSP 12
T A OV o T 1T N 17/ =T P 12
3.28 Performance and Scalability..........ooooiiiiiiiiiiii 12
IS T |V [To [T U I | - U PSPPI 12
.30 POADT Y .t e e e 12
3.31 Client Specified Unique Tdentifiers. 12
I A O) 1= gl =T o TN T (=T =T) €SP 13
4. Overview of Structured Storage 13
5. Design Principles 13
6. Class Interfaces 13
6.1 Defining and ACCESSING PrOPEITIES. ittt e e et eeaeeeeae 13
6.1.1 FrAMEBWOTK. ..ottt e 13
6.1.2 Property DECIAratioN.t 14
6.1.3 e 0T =T AN oo -] 14
6.1.4 Property and Property Set INitialization............oooiiiiiiiiiiiii s 14

6.2 Saving and Restoring Property ValUesS........coooiiiiiiiiiiie e 15
6.3 Persistent Property Class HierarChy 15
6.4 Creating ODJECT INSTANCES.uuuiiiiiii ettt e e e ettt e e e e b aeeeee 15
6.4.1 Creating Objects and Meta Data ObJECES........uuuuiiiiiiiiiiiie e eeaaeaaaaaans 16

6.5 Type-specific Byte Reordering, Internalization and Externalization.............cccccccvvveeviiieecvcien e, 18
AAF Object Manager Design Specification Page 2

June 4, 2001 Avid Technology 11

6.5.1 D=1 TR0 o O 1Y/ Y o= TSP 18

6.5.2 Reading and Writing Values Described by OMIYPEvvviiiii i 19
7. Property Types 19
A R {1 (o U1 - B Y/ 1= TP PPT 19
A o € 1 1L A= T Y/ o1 E T TP TP PP 20
A T 0o 110 o Yo TSY T T LI 157/ o 1= TSP 20
4 SO0 1 o Yo ToY=To B Y oL 20
74.1 Types NOt SPECITIC TO AAF .. s 20
7.4.2 TYPES SPECITIC TO AAF . e e 20
7.5 SUMMATY Of PrO POy Ty DS i eiiiiieiii ittt e e e ettt e e e ettt e e e et et e e e e e teba e eaaene 20
7.6 HOW TYPES Are COMPOSEA...ceuti ittt ettt e e et e ettt e e e eeae e e e e eabiaeaaes 21
7.7 Mapping Of Types TO StruCtured STOTage........cceeiiiiiiiiiiiiiiiie aeaaraaeranans 21
7.8 Indirect, private, encrypted, opaque and KLV tYPeS......cuuiiiiiiiiiiiiiiieeeee e 22
7.8.1 DESIgN PrOPOSAL. ..o 22
T.8.L.1 DAtV AIUR. .. it e 22
7.8.1.1.1 DataValues Representing @ “Stream™ oo 22
7.8.1.1.2 Data Values Representing "array of Dytes” ..., 22
7.8.1.1.3 DataValues representing "Void *"ccoiiiiiiiiiiiiie e 22
R 0 O o € A7 U Y/ =T3P 23
7.8.0.3 NI PO LY PG ettt 23
7.8.1.4 "SIMPTE KLV By PES" .. et eitttttittiitit et e e e et e ettt ettt ettt ans 23
7.8.1.5 AAFTYPEDETOPAGUE. .. e ettt e e e e et 23

7.9 NAME EQUIVAIENCE. ...t ettt e e e e e 23
8. Object Manager Design 25
8.1 ODbject Manager INTEITACES.ttt e 25
8.1.1 Interfaces to Support the Tool Kit Implementation.............ccooooii 25
8.1.1.1 DefiNition ClaSSeS. iiiiiiiiiiiiii et 25
8.1.1.2 Equivalence of Predefined and User Defined AAF ClasseS.........cccovvviviiiieiiiiiiiineee e 25
8.1.1.2.1 Class DefiNitioN.......uuireiiiiii e 26
8.1.1.2.2 Property Definition........cooii i e 26
B.1.1.3 PrOPEITY A CCESS. ittt ettt ettt et 26
8.1.1.4 MEAi@ SEIBAM A CCESS. .ttt ee ettt e ettt ettt e e ettt e e e e e et e e e e ettt e e e et et e e e aeeben s 26
8.1.1.5 Maedia Stream ACCESS FUNCLIONS.vtiiiiiiiiiii e 26
8.1.2 Interfaces Used By The OBJECt MANAGET........c.uviiiieiii e 26
ST S 1 W ot (0 [(=T IS o] - o - 26

8.2 File LEVEI OPIAtIONS...ciiiieiiii et 26
8.2.1 Semantics of AAFFile::Save() and AAFFile:iClOSE().....uvviiiiiiiiiiiiiiiiiiice e 27
8.2.2 [L oo Lo o T Vo [S PP PTT PP 27
8.3 PerSIStENCE INTrASTIUCTUIE. .. uueeiii ettt s 28
8.3.1 PerSiStENCE RUIES DY Ty . it e e e e 28
ST 00 = 0 o 1= 12NV LU= P 28
8.3.1.1.1 Ordinary Property Data.........couuuuuuuiiiiiiiieie et 28

TR T I O |V [T 1= I | - O RTRPN 28

8.3. 1.2 OB Ct RO EIENCES. . e it e e 28
8.3.1.2.1 Strong ODJeCt RETEIENCES.u i e 28
8.3.1.2.2 Strong Object REferenCe VECIOIS....ccciiiiiiiiiiie e e 29
8.3.1.2.3 Strong Ohject ReTEreNCE SeLS.. .. it iiiiiiiii e 29
8.3.1.2.4 Weak ODjJect ReTeIENCES. .. oo ittt 29
8.3.1.2.5 Weak Object REfErenCe VECIOIS.uuuiiiiiiiiiiiiieee it 29
8.3.1.2.6 Weak ODbjJeCt REfEIENCE SBIS.....oii i 29
8.3.1.3 INON-PErSISTENT DALA.......vvtiiniiiieeiie it 29
8.3.2 HOW SAVE WOTKS. .. ettt e e e e e e et e e et et e e 29
8.3.3 SaVviNg @ SiNGIE OB ECT..cciiii i 29
8.34 HOW RESIOIE W OTKS. ... eiiiii ettt e e e e et e e e et n e e e et neeeeannas 30
8.3.5 ReStoring @ SiNgle ODJECT.....ooi i e 30
8.3.6 PerSIStING RETEIENCES. ...t 30
AAF Object Manager Design Specification Page 3

June 4, 2001 Avid Technology 11

ST T A K=Y oY 44T o]] o 30

ST O T O 1 ol U] - ==Y (- (=4[31
ST T TS T N[0 I =T (=T o =P 31
R O T o) (o] o F- U I = (] o=] ¢ A= TP 31
8.4.1 Data Manager View of Optional Properties..........cooooiiiii 31
8.4.1.1 OMPIOPEITY ROULINES. .. ittt ceii et e e e e e e e e e e e e e e eaaaanas 31
8.4.1.2 ROULING SEMANTICS. ... utrruerrririnirriinneeie e 31
8.4.1.3 Validity CONSIIAINTS...oeiuiuit it e et e e e et e e e e ee e 32
8.4.1.4 Declaring an Optional PrOPeItY i e e e 32
8.4.1.5 Accessing an Optional PrOPeITYooi oo 32
8.4.1.6 Removing a Simple Optional Property...........ooi i 33
8.4.1.7 Removing Optional Containment.........ccouiiiiiiiiiii e e 33
8.4.1.8 ON-Disk IMPlICAtIONS. .. iiiii i 33
8.4.2 R Lo - U o o 33
8.4.3 1 1= o =T 33
8.4.4 (D ITo] A o] T 1 o PP 34
8.5 Mapping of AAF Objects to Structured StOrage.........oooeeiiiiiiiiiii s 34
8.5.1 Details OFf IMAPPING...coui i e e e e 34
8.5.2 = L1 0] 1 36
8.5.2.1 AN INStance Of AAFSEQUENCE.....ccoii i 36
8.5.2.2 EXAMPIE DUMP .ttt et et et 37
8.5.2.3 Example DUMP OF @ SEE INUEX.ccceuuuiiiiiiii e 37
8.5.2.4 [Other EXAmMPIEs TBS. . it et 37
8.5.3 Data SITUCTUIES....euiiiiii e 37
ST T00 A 1 (-1 = N 1 =T 37
8.5.3.2 PIOPEITY INABX..ouuiiiiiiiiiiiit e et ettt e e et e e 37
80,3, 2. L PUIPOSE ettt ettt 37
8.5.3.2.2 EXternal repreSENtatioN.........u. i ii ittt 38
8.5.3.2.3 Structure of Property Index Header ..ot 38
8.5.3.2.4 Structure of a Property IndeX ENtry.......ccoooiiiiiiiiiiiii e 38
8.5.3.3 Strong ObjJeCt REFEIENCE. ... ciiiiii i 38
80,3, L PUIPOSE ettt ettt et 38
8.5.3.3.2 EXternal RePreSEntation........ccooiiiiiiiiiiiiiiii e 38
8.5.3.3.3 Structure of a Strong Object REFEreNCe........oovviiiiiiiiiiiiii e 39
8.5.3.4 Strong Object RefErenCe VECIOt 39
80,314, L PUI POt ittt ittt ettt 39
8.5.3.4.2 EXternal RePreSENIatiON. ... cieiiiiiii e 39
8.5.3.4.3 Structure of a Strong Object Reference Vector Index Header..........cccceevvveeiiiiieeiiiiineenns 39
8.5.3.4.4 Structure of a Strong Object Reference Vector Index Entry........ccccccovviiiiiiiiicniiiieeeene 39
8.5.3.5 Strong Object REFEIENCE SOTS.......uuu it e 39
80,3 0. L PUIPOS . e 39
8.5.3.5.2 EXternal REPreSENIAtiON.iiiiiiiiii i 39
8.5.3.5.3 Structure of a Strong Object Reference Set Index Header.........cccccoeovvvvvvveeeeiiiiiinee e, 40
8.5.3.5.4 Structure of a Strong Object Reference Set IndexX ENtry........cccoovvvvivieeeiiiiiiiience e, 40
8.5.3.6 Weak ObjJeCt REFEIENCE.o 40
80,306, L PUIPOS . et e 40
8.5.3.6.2 EXternal repreSeNtatioN...........iiiiiiiii et 40
8.5.3.6.3 Structure of a Weak ODbject REfErENCE.........uvvvviiiiiiiiiiiiiiiiiiiiieiiieeeeie e aaaaaaaaes 40
8.5.3.7 Weak Ohject REfErENCE VECIO it iiiee e e e e e aaaaane 41
TR N R S T oL TP TPPTRPPIN 41
8.5.3.7.2 EXternal repreSentation.o 41
8.5.3.7.3 Structure of a Weak Reference Vector Index Header...........ccoeviiiiiiiiiiiiiiiiiiiee e 41
8.5.3.7.4 Structure of a Weak Object Reference Vector Index ENtry........cccoocovieeiiiiiinieniiiinneennne 41
8.5.3.8 Weak ObjeCt REfEreNCe Sel......ovviii i 41
ST TR = 0 N U T o1 L] - 41
8.5.3.8.2 EXternal REPreSENtatioN........cooiiiiiiiiiiiiiiiiii e 41
8.5.3.8.3 Structure of a Weak Object Reference Set Index Header............coocvivieiiiiiiieniiiiicee e, 41
8.5.3.8.4 Structure of a Weak Object Reference Set IndeX ENtry........ooooieiiiiiiiiiiiiiiiiec e 42

AAF Object Manager Design Specification Page 4

June 4, 2001 Avid Technology 11

8.5.3.9 Stored Object IdentifiCation.........coovviiiii i 42

80,30 L PUIPOSE ettt ettt et 42
8.5.3.9.2 EXternal repreSentalion.o 42
8.5.3.10 Unique Object IdentifiCation...........cooiiiiiiiiiiii e 42
80,300, PUIPOS . . ittt ettt ettt et et ettt e et eanas 42
8.5.3.10.2 EXternal RepreSeNtatioN..........oiiiiiiiiiii i 42

S TR0 00 I R @ T = o [0 1= 1 =Y Vo o 42
80,3, L. L PUI PO ettt ettt et 42
8.5.3.11.2 EXternal RePreSENTATION.uuuieiii et 42
8.5.4 The Referenced-Properties Table.... ..o 42
8.5.4.1 The Referenced-Properties Table Header ... 43
8.5.4.2 The Referenced-Properties Table String SPace.......ccccuvviiiiiiiiiiiiiiiiiiieieeeeeeeee e 43
8.5.4.3 The Referenced-Properties Table Validity CONStraints............ccccvvvvvveeeiiiiiiiiiiece e 43
8.5.4.4 Scalability of the Referenced-Properties Table. ..., 43
8.5.5 General Design PrinCIPIES......ooiiiiiiiiiiii e 43
8.5.6 Extra Design FIEXiDIITY e e 44
8.5.6.1 Per-ODJECE BYLE OFUer ... e ettt 44
8.5.6.2 Per-Object FOrmMat VerSiON.iiiiiii e e e e e 44
8.5.7 Meta-data BYte OFder.......uu i e e e e e e e 44
8.5.8 SEOrage OVEINEAU. .. .uut i e 44
8.5.8.1 General Storage OVErNEa.........oiiiiiiiiiiiiiee e 44
8.5.8.2 Storage overhead for each Property Category........cccuuuuuuruiiiiiiiiiiiiiiiiiee et 45
8.5.8.3 SOME FOIMUIBS. ...t e et e e 45
8.5.8.4 St0Orage OPtimizZatiONS.uiiii et 45
8.5.9 0] o 1= o Y0 o 46
TR T0 L0 I o =T o 3 =TT o £ 46
B.5.10. 1 EXAMPIE i e e 47
8.5.11 Code class ids VS. STOred Class ISu it 47
8.5.11.1 Requirements and MOTIVATION..........iiiiiiiii e 47
IR 10 O O 0 [S{=To (U =] oo - TP 48
8.5.11.2.1 StOred Class 1S.....ooiii it 48

TR 0 5 I o Yo 1= T o =TT T £ 48
8.5.11.3 DeSIgN DeLaAIlS. ... i 48
8.5.11.3.1 Stored Format Design DetailS..........uuuiiiiiiiiiiii e 48
8.5.11.3.2 Reference Implementation Code Design Details..........ccccoveeiiiiiiiiiiiee 48
ST A B =Ty o 0 Yo 3] o] o P 48
8.5.11.4.1 Putting the stored class id where the code class id should go.........ccccceeeiiiiiiiie i, 48
8.5.11.4.2 Is This the Usual COM PraCtiCe?.......ceiiiiiiiiiiiiiiee e e e e e e eenaeas 48
8.5.11.5 DeSIgN AIEINATIVES. . .uuit i 49
8.5.11.5.1 Use an Explicit Property for the Stored Object Id...........cccoeeiiiiiiiiiiiiie 49
8.5.11.5.2 Use a File Local 1dentifier...........coooiiiiiiiiiii 49
8.5.12 CaANONICAl FOIMS. ..o 49
8.5.13 Garbage CollECtiON. i 49
8.5.14 Using This Mapping to Implement IPersiStStOrage.......ccouviiiriiiiiiieiiiiiiiiiiieeee e 50
8.5.15 Storage and Stream NAMES......ccooiiiiiiiiiiiiii e 50
8.5.16 Storage of Object References and Object Reference Arrays.........ccovveviieieeiiiiiiie e 50
8.5.16.1 SIrONQ RETEIENCES. . uu it et e et e 51
8.5.16.2 Restricted Weak ReTEIENCES.uviiiiiiiiiiiiei e 51
8.5.16.2.1 Restricted Weak References in the AAF Object Model.........cccccoeeeiviiiiiiiiii i, 51
8.5.16.2.2 Representation of Restricted Weak ReferenCes...........ooovvviviiieiii i 51
8.5.16.2.3 Implementation of Restricted Weak References..........vevviiiiiiiiiiiiiiiiicc 51
8.5.16.3 General Weak RefereNCEeS.u i 51
8.5.17 STANUAIG STIEAIMS. ciiiitiii ettt ettt 51
TR TN R T O F- T T T o o] g -1 Y28 51
8.5.19 EMDEdded MeAIA. .. .coo oo s 52
8.5.20 USE Of PrOPeItY SolS. it ittt et 52
8.5.21 AAF File SMPTE SIgNAtUIe....ccoiiiiiiiiiiie ettt 52
R I O] o] 1=Tox A NN F= T4 411 o PP PTTRUPTRRPPIN 52
AAF Object Manager Design Specification Page 5

June 4, 2001 Avid Technology 11

8.7 Lazy Loading and Memory ReCIamMatioN.........cooviiiiiiiieiiiis e e e s 53

8.7.1 LBZY LOAAINGttt 53
8.7.2 MEMOIY RECIAMALION. ... ot 53
8.8 TrANSIENT OB OCTS. .. it e e et aae 53
8.8.1 Rules for Combining Transient and Persistent ODJeCtS. ... 53
8.8.2 How These Rules Are IMpPIemMeNted........cooeiiiiiiiiiie e 54
8.9 Deleting Objects From an AAF File... ..o e e 54
8.10 Copying Objects From One AAF File t0 ANOtNer.........ccovviiiiiiiiii e 54
8.11 Moving Objects From One AAF File to ANOther..........oooiiiiiiiiii 54
8.12 COM REfEreNCe COUNTING. ... iiiett ittt e et e ettt e et et e e e et e aeenens 54
I R O] o] [=To B BT 1 £ Tod (o] o VPP TOUUPPTI 55
8.14 SCHEMA EVOIULION. ... it e e e e e e e et e e e e eenaee 55
8.15 MUILIPIE OPEN AAF FilBS. i e e e e e e e 55
8.16 Shared ACCESS 10 AAF FileS. .. it e e e e e anee 55
817 ClASS DICTIONAIY. ...ttt ettt 55
8.8 OOl LI OtimMES. . et e aaaes 56
8.19 IMBAIA SEIBAMING. . et ittt ettt ettt et e e et e et e e ettt e e e et e et e et e ane 56
I IO o T U o | E gL T U LU T PRSP 56
8.20.1 OUL OF DISK SPACE. ...t uiiiii i et e et e e e e e e 56
ST I O TV o) 1= TS (0 56
I N -] o P PP TOUPPTRUPPPIN 56
2 B LT o 10 Lo o 1 o PO UPPTRUPTRRPPIN 56
I 1] o d o] 1 T TP UUPTRUPPTRPIN 56
8.23.1 OVEIVIEW OF ASSEITIONS. .. etiitiitii i ettt e e e et a e e e e e e e eeeeeees 56
8.23.1.1 SIMPIE ASS I IONS. ..t ittt e ettt e e 56
8.23.1.2 ROULINE PreCONUITIONS. .. oiivui it e e e e e e e e e 56
8.23.1.3 ROULINE POSTCONAITIONS. ...ciiiiiiiii e e e e e e 56
8.23.1.4 ROULING THACING e et ettt ittt ettt e e ettt e e et e e e et bt e eaebt e eeeanns 56
8.23.2 Assertion Violation BaCKSTOP.ccuuuuuiiiiiiiii e 57
B.23.2.1 OVEBIVIBW . itiiiititetii oottt ettt 57
8.23.2.2 Example Dodo Generated COUE.......ciuuuuiiiiii i e e 57

9. Notes for Developers of Object Manager Client Code 57
9.1 Cookbook for making Properties PersiStent..........oouuuuuiiiiiiiiiiiii e 57
911 ReCipe (fOr the deVEIOPEI)....oiii e e e e e 58
9.1.1.1 Use property declaration templates........cooiiieiiiiieiiiiie e 58
0.1.1.2 Define PrOPertY TOS...coieieiiiiii et 59
9.1.1.3 INItialize the PrOPerties. .. .cco it 59
9.1.1.4 Initialize the Property Set (_per si st ent Properti €S).....cccoovviiiiiiiiiiiiiiiiieec 59
9.1.2 Recipe (for the dodo t00).....coouui e 59
9.1.2.1 Include the Appropriate Header FIleS.........oooo i 59
9.1.2.2 Declare the Class t0 be Storable............uvviiiiiiiiiiiiiiiiii 59
9.1.2.3 Define OV OF @bl € OVEITIURS...cciiiiiii it e e e e e 60
9.1.3 COM REferenCe COUNTING...c..uuui i e et e e e e e e e e r e e e e e e e e e e ane e 60
0.1.3.1 AN EXAMPIO e 60
9.1.3.1.1 Class DeClaration.cccuuu i e e 60
9.1.3.1.2 Class DefiNitiON. ... e 61

9.14 N L0) (= F TP TPTP 62
(S O o - U [o 1T o (] 0 =T 4V 14 LTSS 62
9.3 Persistent Objects, Attached Objects AN FileS........ccoiiiiiiiiiii e 63
9.3.1 Determining if an Object is Owned by Another ODJECt...........cooviiiiiiiiiiiiii e 63
9.3.2 Determining If An Object Is Contained Within A File..........ooiiii 64
9.3.3 Determining if an ObJeCt 1S PeIrSISTENT.......uuuueiiii i 64
9.34 SUIMIMIATY et ettt ettt ettt et et etttk etk e et ettt et e e e e 64
9.35 L0 (=T PP 65
10. Performance, Capacity and Scalability Tests 65
O O o [To o T o (o] 1 2T 65
AAF Object Manager Design Specification Page 6

June 4, 2001 Avid Technology 11

10.1.1 pUIPOSE OF 18S . ue ittt
10.1.2 ideal BERAVION. ..ciiui e
10.1.3 expected DehaViOr........cooviiiiiii
10.1.4 planned optimization. ...
RO R ST o] o o] =1 PO PP TP
10.1.6 INPUE AALA....uuueieiici e e
1017 graP N
10.2 File 0pen TatenCY....ccoovvuiiiiiii
10.2.1 PUIPOSE OF TEST..ciieeiii i
10.2.2 ideal BENAVIOF. ..o
10.2.3 expected Dehavior.........oooii i
10.2.4 planned optimization..........cooeeiiiiiii e
0 0728 T o o o | = o
10.2.6 INPUL GALA...oevvt e
10.2.7 grAPN e
10.3 File save 1atenCy (Create).... ... i eeiiiiiiii e
10.3.1 PUIPOSE OF T8S T eniiit e
10.3.2 ideal BENAVIOr.......coiviiiiiiii
10.3.3 expected behavior.........ccoiiiiiiii
10.3.4 planned optimization..........coooooiiiiiiiiiii e
10.3.5 PrOGIAM . .cceiiiiii e
10.3.6 INPUE LA ..cetiiee i e
10.3.7 gra N
10.4 File save latency (MOdify)......ccooiiiiiiiiiiii e
10.4.1 PUIPOSE OF 18S . un it e
10.4.2 ideal BENAVION...cciu i
10.4.3 expected DENaVIOr.........coiiiiiiii
10.4.4 planned optimization. ...
RO ST o] oo =1 PO PP UP PP
O 0T o1V o - - PPN
10.4.7 graP N
10.5 Vector/set scalability........cccoooviiiiiiiiiiii
10.5.1 PUIPOSE OF TEST..ciieeiii i
10.5.2 ideal BehaVIOr....o..ui i
10.5.3 expected behavior..........coiiiiiii
10.5.4 planned optimization..........cccooeeiiiiiii e
0 =8 T o o o | = o
10.5.6 INPUL QALA...cevvtniieiii e
10.5.7 grAPN
10.6 ESSENCE ACCESS (WIITE)..eiuuuuneiiiiii e ettt e e
10.6.1 PUIPOSE OF T8t .un it
10.6.2 ideal BENAVION........civiiiiiiiiii
10.6.3 expected behavior..........coiiiiiiii
10.6.4 planned optimization..........coooooeiiiiiiiiii
10.6.5 PrOGIAM . .coei ittt
10.6.6 INPUE LA ...eu it e
L0.6.7 gra e
10.7 ESSENCE ACCESS (WIITE)..ivuuuuneiiiiiii i e e et e e et e e e e e e e e e e e e aaes
10.7.1 pUIPOSE OF 18S . ue it e
10.7.2 ideal BENAVIOr...ccou e
10.7.3 expected DehaVior........cooii i
10.7.4 planned optimization. ...
RO ST o] o]0 = PO PP PP
10.7.6 INPUE AALA....uuuiiiiiii e
10.7.7 grAP N

11. Implementation Order

12. Glossary

AAF Object Manager Design Specification
June 4, 2001 Avid Technology

Page 7
11

13. References 70

13,1 GENeral RO I CES. . ittt 70
13.2 COM and SErUCTUIEA STOTAQE. .. ceeeen ettt ettt e et e e e e eeeebba s 70
13.3 Object Oriented Software ENQGINEEIING......ccoiiiiiiiiiiiiiii e a e e e e e e aaaaaaaaan 71
IR TR O o] [0 I -1 - 0= U= 71
13,5 DESIGN PalBINS. ittt 71
13.6 Program Portability, Data Representation And Data EXChange..........cccooovviiiiiiiiiiii e, 71
A B F- 1 - B £ 40 0] (U 3 T T PP UPTPPT 71
14. Revision History 73

AAF Object
June 4, 2001

Manager Design Specification Page 8
Avid Technology 11

1. Introduction

This document describes the design of the Object Manager component of the AAF software development kit.

2. Design Overview

The design treats an AAF file as a persistent object store. Persisted objects reside in a structured storage file. Once
an AAF file has been opened, clients may access objects without having to be concerned about that file. Transient
objects, not associated with any persistent store, may also be created. Transparent access to both persistent and
transient objects is provided.

3. Summary of Requirements

The following sections summarize the currently known requirements placed on the Object Manager. These
requirements are presented in no particular order.

3.1 Direct Support of the AAF Object Model
The Object Manager will directly support the AAF object model.

3.2 Persisting Objects and Object References

The Object Manager will provide isomorphic persistence of objects and their interrelationships. The persistence
mechanism will properly handle circular and null references. The Object Manager will support persistence of the
following kinds of object reference...

Strong object reference — containment of one object by another object

Strong object reference vector — containment of an ordered sequence of objects by another object
Strong object reference set — containment of an unordered sequence of objects by another object
Weak object reference - a reference to an object

Weak object reference vector — an ordered sequence of references to objects

Weak object reference set — an unordered sequence of references to objects

3.3 Transparent Access to Persistent Objects

The Object Manager will allow and require persistent objects to be accessed in exactly the same way as transient
objects. In particular no explicit call will be needed to write an object to persistent store.

3.4 Implicit Saving of Individual Objects

The Object Manager will support implicit saving of modified objects to persistent store. This is a consequence of
transparent access to persistent objects.

3.5 Explicit Saving of AAF Files

The Object Manager will support explicit saving of all modified objects associated with a given AAF file. Note
that this requirement does not conflict with the requirement for transparent access to persistent objects since this
requirement applies to a set of objects and not to a particular object.

3.6 Referential Integrity

In a valid AAF file all object references will be valid. A valid object reference is one that refers to an AAF object.

AAF Object Manager Design Specification Page 9
June 4, 2001 Avid Technology 11

One form of an invalid object reference would be a dangling reference. A dangling reference is an object reference
that was once valid but that has become invalid because the object to which it once referred has been deleted from
the AAF file. Note that a null reference is not invalid. It is, however, an error to attempt to follow a null reference.

Because access to persistent objects is transparent this requirement also applies to an in-memory graph of AAF
objects, persisted in an AAF file. Although in this case the requirement holds only at stable times. That is, the
requirement holds between, and not during updates. The graph is stable before and after an update. A client
application may only interrogate the graph of AAF objects at stable times and so can only see a stable graph.

3.7 Incremental File Access (Lazy Loading)

The Object Manager will support incremental access to an AAF file. To phrase this requirement in the negative -
the Object Manager will not have to read an entire AAF file in order to access individual objects. Such incremental
or lazy loading applies both at the object and at the property level. That is, object are not loaded into memory until
they are referenced and even then the properties are not loaded until they in turn are referenced

3.8 File Integrity

The Object Manager will detect and robustly handle all structural errors in an AAF file that it opens for reading.
The Object Manager will write only structurally valid AAF files.

3.9 Multiple Open AAF Files

The Object Manager will support an application having more than one AAF file open at the same time.

3.10 Lazy Loading

The Object Manager will support lazy loading of objects. An object will not be loaded until it is referenced, and,
even then, objects referenced by the loaded object will not be loaded until they themselves are referenced. Lazy
loading is optional and can be enabled or disabled dynamically on a per-AAF file basis.

3.11 Transient Objects

The Object Manager will support transient objects. A transient object exists independently of any AAF file. The
state of a transient object is not saved to an AAF file. A given object is either persistent or transient. The Object
Manager will define and enforce the rules for combining transient and persistent objects.

3.12 Object Extensibility

The Object Manager will support a hierarchy of classes, descended from a common ancestor AAFObject that is
extensible in the following ways

the definition of new classes

the definition of new properties

the definition of new property types

the addition of optional properties to existing classes
the definition of new classes with new behavior

The AAF class hierarchy is extensible but extensions are constrained to those described in the AAF Dictionary.
Note that it is not possible to override the behavior of predefined classes.

3.13 Optional Properties

The Object Manager will support classes with optional properties. An optional property may or may not be present
on individual instances of the class. The property definition must, however, be part of the definition of the class.

3.14 Edit in Place

The Object Manager will support edit in place. “Edit in place,” means the modification of a portion of an AAF file
without having to read or rewrite the entire file.

AAF Object Manager Design Specification Page 10
June 4, 2001 Avid Technology 11

3.15 Application Object Creation Model

The Object Manager will support an application object creation model with the following characteristics. This is
referred to as “bottom up creation”. That is, the application first creates an object and then later attaches that object
to its containing object.

1. The Object Manager will allow client applications to specify the file with which a given persistent object is
associated.

2. The Object Manager will ensure that objects from different files are not combined.
3. The Object Manager will allow client applications to specify that a given object be persistent or transient.

4. The Object Manager will ensure that persistent and transient objects are not combined inappropriately.

3.16 Forward Compatibility

Newer versions of the Object Manager must be able to read and reasonably process, files created by older versions.

3.17 Backward Compatibility

Newer versions of the Object Manager must write files that can still be processed reasonably by older versions.

3.18 Structural Checking

The Object Manager is responsible for checking and maintaining the structural integrity of an AAF file. The Object
Manager is not responsible for checking and maintaining the correct semantics of an AAF file.

3.19 AAF File Byte Order

The Object Manager will support the AAF requirements for file byte order. These rules are
1) Byte Order is specified on a per file basis, that is, with the exception of certain media types (see below) all the
data in a given file is in the same byte order
2) When a file is created it is created with the byte order of the host
3) When afile is modified the existing byte ordering of the file is preserved
4) Where a media format definition specifies the byte ordering for the media data the rules of the format definition
are followed. Examples are
a) AIFC
b) WAVE
The Object Manager will perform byte reordering on read and/or write where the byte order of the file is different
than that of the host. Such byte reordering is transparent to Object Manager client code. Note that these
requirements apply to both predefined and user defined properties. Note also that these requirements apply only to
the AAF property data itself and not to any meta-data needed by the Object Manager implementation.

3.20 AAF Files Contain Only AAF Objects

The Object Manager will enforce the constraint that AAF files contain only AAF objects. This means two things

1) The root IStorage in an AAF file is an AAF object. The Object Manager opens and creates structured storage
files with St gOpenSt or age() and St gCr eat eDocFi | e() rather than operating on an IStorage provided
by clients. In other words the Object Manager is responsible for managing the entire structured storage file.

2) The Object Manager provides no interface that allows access to the IStorage representing a given AAF object.
Therefore all IStorages in an AAF file are AAF objects.

3.21 AAF Files And Objects Are Not Embeddable

The Object Manager will enforce the constraint that AAF files and objects are not embeddable in other files. This
constraint is realized by the fact that the Object Manager provides no interface that allows access to the IStorage
representing a given AAF object.

3.22 Internal Interfaces To The Object Manager

The client of the Object Manager in the AAF reference implementation is the Data Model Manager. Since much of
the Data Model Manager code will have originated in the OMFI implementation, the interfaces presented to client
code by the Object Manager will make the porting process as simple as possible.

3.23 External Interfaces To The Object Manager

AAF Object Manager Design Specification Page 11
June 4, 2001 Avid Technology 11

The only client of the Object Manager in the AAF reference implementation is the Data Model Manager. There is
no requirement for the Object Manager to export interfaces that are visible to clients of the AAF reference
implementation. This means that even though clients of the AAF reference implementation will use COM to call
the AAF API, there is no requirement that the Object Manager implementation use COM.

3.24 Admissibility Of Alternative Implementations Of AAF

The Object Manager design will allow for alternative implementations of AAF. In particular
The same AAF object created by different implementations of AAF should have the same external
representation.
Once created, an AAF file must not be tied to a particular AAF implementation.
The objects in an AAF file must not be identified by COM class ids (code class ids) which are specific to a
particular AAF implementation, instead they must be identified by SMPTE stored object ids which are the
same for all AAF implementations.

3.25 File Size

The Object Manager will create AAF Files that are approximately the same size as an equivalent OMF file. This
may be difficult to accomplish given a Structured Storage implementation with “blocky” allocation.

3.26 Extensible Types
The Object Manager will support the run-time extension of the set of possible property types. That is, the set of
possible property types must not be compiled into the Object Manager.

3.27 Canonical Types

Some types, notably enumand st r uct types from Cand C++ have in memory representations that differ from
compiler to compiler. For enumtypes different sizes may be chosen. For st r uct types different alignment
constraints may be applied. These differences in representation most often occur between different platforms but
sometimes arise between different compilers on the same platform and even within the same compiler on a given
platform as the result of applying different compile time options. The Object Manger must support persisting
values of these types in a platform and compiler independent way.

3.28 Performance and Scalability
The Object Manger will meet the following performance goals...
file open latency independent of the number of objects in the file
file close latency independent of the number of objects in the file (note that close does not imply save)
file save time linear with the number of modified objects
access to set elements logarithmic with the number of objects in the set

3.29 Media Data

The Object Manager must support the storage and retrieval of media data in AAF files. The usual read, write and
seek operations must be supported.

3.30 Portability

The Object Manager portability requirements are the same as for the entire reference implementation. Those
requirements are summarized here. The Object Manager code must be portable to the following platforms...
Windows NT — x86
Macintosh — PPC
Silicon Graphics Irix — MIPS
In addition the Object Manager should not be an obstacle to adopters wishing to port the reference implementation
to other platforms. These requirements boil down to...
Use of ANSI conformant C++
Limiting dependencies on no-AAF technologies to the dependency on Microsoft Structured Storage.

3.31 Client Specified Unique Identifiers
Objects in a reference set need to be uniquely identified. The Object Manager will allow the client code (the Data
Model Manager, or DM, code) to specify the unique identifier, usually a GUID, to be used for a particular object.
Examples of such unique identifiers are...

a MOB id

AAF Object Manager Design Specification Page 12
June 4, 2001 Avid Technology 11

a SMPTE assigned unique label
3.32 Other Requirements

[TBS. As other requirements are identified they will be summarized here.]

4. Overview of Structured Storage

A structured storage file may be compared to a file system with in a file. The structured storage concepts map to file
system concepts as follows

IStreams are approximately equivalent to file system files. In particular an 1Stream may be used to store
arbitrary data just as a file may be used to store arbitrary data.

IStorages are approximately equivalent to file system directories. In particular an 1Storage may contain both
IStreams and other 1Storages just as a directory may contain both files and other directories.

5. Design Principles

Ensure the consistency of the stored format of AAF objects, predefined and extended, by providing automatic
persistence of registered properties. This approach neither requires nor allows individual objects or classes to
manage their own stored representations.

AAF Files are not a general-purpose object store. Only objects that are described in the AAF Dictionary may be
stored in and retrieved from an AAF file.

Support natural coding of AAF class methods when accessing persistent properties. That is, no explicit calls are
needed to access properties. Accessing a persistent variable should be as similar as possible to accessing a non-
persistent variable of the same type. This principle is intended to support the migration of the OMFI tool-kit
code into the AAF tool-kit by allowing natural coding of persistent property access.

Independent of the particular AAF object model or class hierarchy chosen.
No per-class code to support persistence.
Construct only legal object networks and files rather than “construct then verify”.

Loading an object reference is the same as performing a lazy load of the referenced object. Dereferencing an
object reference causes the actual load to occur.

[TBS. As other design principles are identified they will be recorded here.]

6. Class Interfaces

This section describes the interfaces to the principal classes in the Object Manager.

6.1 Defining and Accessing Properties
This section describes how properties are defined and accessed by the toolkit implementation code. The example
uses a sub-set of the properties of the AAFHeader class.

6.1.1 Framework

To become persistent a class must inherit from class OMStorable. Class OMStorable contains the declaration of the
persistent property set and member functions for saving and restoring the properties.

class Owvstorable {

pr ot ect ed:

AAF Object Manager Design Specification Page 13
June 4, 2001 Avid Technology 11

voi d saveTo(OVBt oredCbj ect & s) const;
voi d restoreCont ent skron{ OVSt or edCbj ect & s);

OWPropertySet _persistentProperties;

b

cl ass | npl AAFQhj ect : public Ovstorable, public |InplAAFRoot

{
-

6.1.2 Property Declaration

A class must declare its properties using template classes exported by the Object Manager. This gives the properties

persistence behavior but allows the implementation code to access them naturally.

cl ass | npl AAFHeader : public | npl AAFQhj ect
{

private:
/1 Persistent properties
/1
OVFi xedSi zePr opert y<aaf | nt 16>
OVFi xedSi zePr oper t y<aaf Ti neSt anp_t >
OwvBt r ongRef er enceVect or Propert y<Il npl AAFI denti fi cati on>

/1 Non-persistent properties
/1
...declared as for regular C++ ..

b

6.1.3 Property Access

AAFRESULT STDMETHODCALLTYPE
| mpl AAFHeader : : Get Byt eOrder (aaflnt16 *pByteOrder)

{
*pByt eOrder = _byteOrder;
return AAF_ERR NONE;

}

6.1.4 Property and Property Set Initialization

_byteOrder;
_last Modi fi ed;
_identificationList;

The constructors for all properties take a property id (PID_ value) and a property name. The constructor for a

persistent object must...

1. initialize the properties it contains, and

2. initialize its own property set by inserting the properties

Here is some example code from AAFHeader that illustrates this...

| mpl AAFHeader : : | npl AAFHeader ()
/1 Initialize the properties of this object
/1

_byteOrder(Pl D Header Byt eOrder, "ByteOrder"),

_last Modi fi ed(Pl D Header Last Modi fi ed, "Last Modi fi ed"),
AAF Object Manager Design Specification Page 14
June 4, 2001 Avid Technology 11

_identificationList(PID Header ldentificationList, "ldentificationList"),
{

/1 Initialize the property set of this object by

/1 inserting the properties of this object.

/1

_persistentProperties. put(_byteO der.address());

persistentProperties. put(|astMdified.address());

_persistentProperties.put(_identificationList.address());

}

Note that OVPr opert ySet : : put () accepts the address of an OMPr oper t y object. The code above calls
OWProperty: : address() to obtain the correct address since OMPr operty: : oper at or &isoverridden to
provide the address of the property data (rather than the property object) for the convenience of AAF class member
functions.

6.2 Saving and Restoring Property Values

Clients of the Object Manager do not need to provide any code that explicity saves or restores individual property
values. The saving and restoring of property values is a file level operation. When a file is opened, using

OWFi | e: : open(), the property values are lazily restored, when a file is saved, using OVFi | e: : save(), any
dirty (changed) properties are written to the file. Changed property values may also be written to the file by an
explicit call to OVFi | e: : save().

6.3 Persistent Property Class Hierarchy

The hierarchy of property classes is as follows:

QOVPr operty
OVRef er encePr opert y<Ref erencedObj ect >
OW\eakRef er encePr opert y<Ref er encedj ect >
Owvst r ongRef er encePr opert y<Ref er encedj ect >
OVBi npl eProperty
OWect or Propert y<Pr opertyType> /1 Not yet inplenented
OWFi xedSi zePr opert y<Pr opertyType>
OWwar i abl eSi zePr opert y<PropertyType>
OMChar act er St ri ngPr opert y<Char act er Type>
OVBt ri ngProperty
OWN deSt ri ngProperty
OMVCol | ecti onProperty
Owvet r ongRef er enceVect or Propert y<Ref er encedbj ect >
OW\eakRef er enceVect or Propert y<Ref er encedbj ect > /1 Not yet inplenented
OwVBt r ongRef er enceSet Pr opert y<Ref er encedj ect > /1 Not yet inplenented
OW\eakRef er enceSer Propert y<Ref er encedCbj ect > /1 Not yet inplenented
OvDat aSt r eanPr operty

6.4 Creating Object Instances
When reading an AAF file the Object Manager needs to be able to create object instances based on the stored object
id found in the file. The following Object Manager interface is defined for this purpose:

class OMd assFactory {
public:

/1l Create an instance of the appropriate derived class, given the class id.
/1
virtual OVStorable* create(const OMC assld& classld) const = O;

AAF Object Manager Design Specification Page 15
June 4, 2001 Avid Technology 11

b

The function OMClassFactory::create() creates an uninitialized instance of the class with the given classld. This
interface is defined by the Object Manager, called by the Object Manager and implemented by the Object Manager
client. The Object Manager reads a stored object id from the AAF file and passes it to

OVCl assFact ory: : creat e(), this function returns a pointer to a new instance of the appropriate class with a
properly initialized property set (including and extension properties). The phrase “appropriate class” is intended to
include any extension classes and any "default base class instantiation™ that is necessary. The phrase “properly
initialized property set” is intented to include any extension properties that may be present.

The Object Manager client is also responsible for associating a given class factory with a given file using the
open/create methods on OVFi | e.

class Owile : public ...{
publi c:

static OWil e* openExi stingRead(const wchar _t* fil eNane,
const OMC assFactory* factory,
const OM_oadMobde | oadMbde);

}

The client of the Object Manager in the AAF reference implementation is the Data Model Manager. The Data
Model Manager implements OMClassFactory::create() with reference to the appropriate AAFDictionary.

6.4.1 Creating Objects and Meta Data Objects

This section outlines some design rules to be observed when creating objects, and the associated meta-data objects.
1) No OwPr operty may be created withouth having a valid OvPr oper t yDefi ni ti on*
2) No property value may be read or written without having a valid OMType* , this is obtained from the

OWPr opert yDef i ni ti on* supplied when the OMPr oper t y was created.

3) All properties to be created as required properties (as opposed to optional properties) prior to property
initialization.

4) After an object is created (instantiated), but before its properties are initialized the meta-data for that object must
exist in memory in a valid state. This meta-data includes

a) a ClassDefinition for the object and all of its ancestor classes

b) a PropertyDefinition for each property in each of the above ClassDefinitions

c) a TypeDefinition for each of the above PropertyDefinitions

The meta-data is created on demand. The meta-data for Class Foo is created the first time an instance of class Foo is
created, subsequent instances of class Foo share the same meta data as all previous instances.
5) There are two kinds of built in information.

a) The information needed to create "standard™ AAF objects that are not defined in the current file (in the case
of Cr eat eNewMbdi f y() this means all classes).

b) The information that cannot be read from the file because it is either intrinsic (e.g. an object is an 1Storage)
or self describing (e.g. the instance of ClassDefinition that describes a ClassDefinition object or the Name
property of TypeDefinitionString which is itself of a type described by TypeDefinitionString).

6) This results in the following Axioms

a) Create function
i) File (should have no SOID)

i) Header
iii) Dictionary

b) LookUpClass function
i) ClassDefinition

c) LookUpType function
i) StrongReference

AAF Object Manager Design Specification Page 16
June 4, 2001 Avid Technology 11

ii) StrongReferenceVector
iii) StrongReferenceSet
iv) WeakReference (AUID)
v) WeakReferenceVector (AUID array)
vi) WeakReferenceSet (AUID array)
vii) AUID
viii) String

d) LookUpProperty function
i) ?

7) The axiomatic definitions are
a) Never read from the file.
b) Written to the file for consistency.

Doing this requires an api other than LookUp. An api is needed that will determine if an object is present in the file

without causing the object to be loaded if it is in fact present. e.g. bool

OvBt rongRef erence{ Set | Vector}<>::isPresent (AU D ident);

8) The axiomatic definitions are implemented as follows. This example uses LookUpType, however, there are

other axiomatic definitions.

LookUpType(a)
{
if (a == axiomatic type 1) {
create type 1 in nmenory
ensure type 1 is present in file dictionary
result = type 1
} elseif (a == axiomatic type 2) {
create type 2 in nmenory
ensure type 2 is present in file dictionary
result = type 2
} elseif (a==...) {

} elseif (a == axiomatic type N) {
create type N in nmenory
ensure type Nis present in file dictionary
result = type N
} else {
if (ais registered in dictionary) {

result = type of a // type is unpersisted here

} else {
create type of a
regi ster type of a
result = type of a

}
}

9) Asadebugging/diagnostic aid the implemetation should detect loops caused by an incorrect implementation

(e.g. missing axiom). One way to do this is as follows.
Stack t;

CreateDefinition(def, ident)
{
if (t.contains(ident)) {
error
} else {
t. push(i dent)

AAF Object Manager Design Specification
June 4, 2001 Avid Technology

Page 17
11

creation code ...
0 = create def
0.Setldentification(i)

t. pop(ident)

10) An alternative scheme would be to use 3-stage object creation (instantiate, register and initialize) as a means of
breaking cycles. That approach has the disadvantage that an object may be accessed after being instantaited and
registered but before being initialized. Also it does not prevent by itself, attempting to read axiomatic
definitions from the file.

6.5 Type-specific Byte Reordering, Internalization and

Externalization
There are at least two approaches to choosing the persisted representation of structured types. Here “structured types”
includes structs, arrays and enums - anything where a compiler has a choice of the in-memory representation. The
compiler choices are as follows...

a) The size of a data item

b) The alignment of a data item (and consequently padding)

Note also the repertoire of types supported by the Object Manager is not compiled-in, but is instead available at
run-time as described in the dictionary.

The two possible approaches are
a) persist using the (possibly byte-swapped) in memory representation of the host platform (machine + OS +
compiler) and describe that representation in the dictionary.
b) use an AAF defined canonical representation.

The approach chosen by the Object Manager is b) since it is
a) simple to explain and document
b) in accordance with the plan for SMPTE standardization
c) platform (machine + OS + compiler) neutral and so fosters interchange

6.5.1 Definition of OMType.

These requirements result in an interface used by the Object Manager for manipulating data types at run time.
Cl ass OMIype is defined as follows.

cl ass OMTIype {
publi c:

virtual void reorder(...);
virtual void externalize(...);
virtual void internalize(...);

i
The purpose of each virtual function is as follows ...

a) reorder() - putthe bytes of the data into the proper order, “byte swap”. By convention the data is taken
to be in external form.

b) externalize() - putthe bytes of the data into the appropriate external from, typically this involves
removing any padding (for record types), and adjusting the size of the data (for enumerated types).

c) internalize() - putthe bytes of the data into the appropriate internal from, typically this involves
adding any required padding (for record types), and adjusting the size of the data (for enumerated types).

AAF Object Manager Design Specification Page 18
June 4, 2001 Avid Technology 11

Note this design uses ext er nal i ze() and i nternal i ze() instead of, say, pack() and unpack() since
ext ernal i ze() may in fact make a data value larger. For example, aaf Bool compiles to 1 byte with
Macintosh CodeWarrior and to 2 bytes with NT VC++ (with our current VC++ and CodeWarrior compiler
settings) and so if we choose to make all AAF, non-extensible, enumerations 2 bytes in size, then

ext ernal i ze() on the Macintosh will cause the value to be increased in size. So clearly ext ernal i ze() is
to be preferred over pack() .

6.5.2 Reading and Writing Values Described by OMType

Given the declarations

OMIype* type;
OwvByt e* val ue;

Persisting a data value is
type- >external i ze(val ue);
if (fileByteOrder != hostByteO der)
t ype- >r eor der (val ue);
write(val ue);
Unpersisting a data value is
read(val ue);
if (fileByteOrder != hostByteO der)
t ype- >r eor der (val ue);
type->internalize(val ue);

All type definitions are implemented in the Data Manager and descended from OMTy pe as follows ...

cl ass | npl AAFTypeDef : public OMIype {

b

Note that reordering is always performed on values in their external form.

7. Property Types

These types are described in detail in Annex B of the document “Proposed SMPTE Recommended Practice for
Television - Interchange of Video and Audio Material and Related Descriptive Information as Edit Decision Data”.
The classification of the types presented here is introduced by this document.

7.1 Structural Types
The structural types define the structure of a given AAF object network. These types are built in to the Object
Manager.

Type Meaning

Strong reference Containment (ownership) of an object

Strong reference vector Containment (ownership) of an ordered collection of objects

Strong reference set Containment (ownership) of an unordered collection of objects

Weak reference Pointer to an object

Weak reference vector Ordered collection of pointers to objects

AAF Object Manager Design Specification Page 19

June 4, 2001 Avid Technology 11

| Weak reference set | Unordered collection of pointers to objects |

7.2 Primitive Types
The primitive types are the fundamental types supported by the Object Manager, all other types are defined in terms
of these. These types are built in to the Object Manager.

7.3 Compositional Types
Used to build define a type in terms of other, previously defined types. These types are built in to the Object
Manager.

7.4 Composed Types
7.4.1 Types Not Specific To AAF

These types are not specfic to AAF. These types are not known to the Object Manager. These types are built in to
the AAF reference implementation. They are defined in terms of the built-in types.

7.4.2 Types Specific To AAF

These types are specfic to AAF. These types are not known to the Object Manager. These types are built in to the
AAF reference implementation. They are defined in terms of the built-in types.

7.5 Summary Of Property Types
1) Primitive Types
a) Integer (parameterised by size and signedness)
2) Compositional Types
a) VaryingArray
b) FixedArray
c) Aggregate
d) Renamed
e) Enumerated
f) String
g) Stream (DataValue, essence or media data)
3) Composed types
a) Types Not Specific To AAF
i) Character types
(1) Character (UInt16 - Unicode character)
ii) Enumerated types
(1) Boolean
iii) Signed numeric types
(1) Int8
(2) Int16
(3) Int32
(4) Int64
iv) Unsigned numeric types
(1) Uint8
(2) Ulntl6
(3) Ulnt32
(4) Ulnte4
v) Signed numeric array types
(1) Int8Array
(2) Intl6Array
(3) Int32Array
(4) Int64Array
vi) Unsigned numeric array types
(1) UInt8Array

AAF Object Manager Design Specification Page 20
June 4, 2001 Avid Technology 11

(2) Ulntl6Array
(3) Ulnt32Array
(4) Ulnt64Array
b) Types Specific To AAF

i) Enumerated types
(1) ColorSitingType
(2) EdgeType
(3) EditHintType
(4) FadeType
(5) FilmType
(6) JPEGTablelDType
(7) LayoutType
(8) ProductVersion
(9) PulldownKindType
(10) PulldownDirectionType
(11) PhaseFrameType
(12) TapeCaseType
(13) TapeFormatType
(14) VideoSignal Type
(15) TCSource
(16) ReferenceType

i) Aggregate types
(1) TimeStamp
(2) VersionType
(3) Rational
(4) Rectangle

iii) Renamed types
(1) Length
(2) Position

iv) Array types
(1) CompCodeArray
(2) CompSizeArray

7.6 How Types Are Composed

Composed types (instances of compositional types) contain pointers to the types of which they are composed. For
example, a fixed array of integers is prepesented by an instance of an array that contains a count of the number of
elements and a pointer to an integer type.

The compositional types support the same polymorphic interface as the primitive types. This is an example of the
“Composite” design pattern.

As an example consider ar eor der () method to reorder (“byte swap”) a value of that type. For a primitive type,
such as an integer, the r eor der () method is implemeted as a direct manipulation of the bytes of the value. For a
composed type, say a fixed array of integer, the r eor der () method is implemented by multiple r eor der ()
calls on the composed type, in this case integer. In this example the array r eor der () method is simply a loop
that calls the r eor der () method for the array element type.

7.7 Mapping Of Types To Structured Storage
This table shows how the property types map to the different stored forms supported by the Object Manager when
mapping property values to structured storage.

Type Mapped to Structured Storage by Object Manager as

Strong reference SF STRONG OBJECT REFERENCE

Strong reference vector SF STRONG OBJECT REFERENCE VECTOR

Strong reference set SF STRONG OBJECT REFERENCE SET

AAF Object Manager Design Specification Page 21

June 4, 2001 Avid Technology 11

Weak reference SF WEAK OBJECT REFERENCE

Weak reference vector SF WEAK OBJECT REFERENCE VECTOR
Weak reference set SF WEAK OBJECT REFERENCE SET
Media data SF DATA STREAM

All other data types SF DATA

See section 8.4 of this sepcification for more details on the mapping of AAF property types on to structured
storage. The SF_* values are passed as the "st or edFor mi' parameter in the OV5t or edCbj ect : : read() and
OVBt or edChj ect: :wite() calls.

Note that the SF_STRONG_OBJECT_REFERENCE_SET and SF_WEAK_OBJECT_REFERENCE_SET stored
forms are not yet implemented. The VECTOR form is used in all cases. The only consequence of this is that
ordering is preserved where it need not be.

7.8 Indirect, private, encrypted, opaque and KLV types

This section describes a design solution for the representation of the following datatypesin AAF.

1) Thefollowing three uses of DatavValue
a) "stream" - asin EssenceData:Data and TimeCodeStream::Source
b) "varying array of bytes' - asin AIFC::Summary, EdgeCode::Header, RGBA Descriptor::Pa ette,

TIFFDescriptor::Summary and WaveDescriptor:: Summary

c) "void*" - asin ConstantValue::Vaue, ControlPoint::Value and TaggedVaue::Vaue

2) "privatetypes' - that is data whose type is known to party A, the creator of the data, and to party B the
consumer of the data, but not to party C who may modify the file containing the data being communicated from
A to B. Thedatais private to A and B. The private data must be preserved, without client code intervention,
when C modifiesthe file in which it resides.

3) "encrypted types' - The same as "private data' except that the datais encrypted. While A and B trust each other,
neither trusts C. Again the data must be preserved across modifications made by C.

4) "SMPTEKLYV types'

7.8.1 Design proposal
7.8.1.1 DataValue

7.8.1.1.1 DataValues Representing a “stream"

Such properties should not be implemented as DataValues. Thisis aready implemented, streams are described by
AAFTypeDef Stream and implemented by OM DataStreamProperty.

7.8.1.1.2 Data Values Representing "array of bytes"

Such properties should not be implemented as DataVa ues. Arrays of bytes are described by
AAFTypeDefVariableArray (or by AAFTypeDefFixedArray) with an element type of "unsigned 8-bit integer" and
implemented by OMYV ariableSi zeProperty<OM Byte>

7.8.1.1.3 DataValues representing "void *"

These values are represented by AAFTypeDefindirect. Values described by AAFTypeDefindirect consist of

1) the AUID of the actual type

2) thevalueasavariably sized array of bytes

The class AAFTypeDefIndirect has no properties of its own other than a reference to the actual type.

Properties values described by AAFTypeDefIndirect are automatically byte swapped by the Object Manager just like
any other type.

The class AAFTypeDefIndirect has a method, Actual Type() which returns the actual type of agiven value. This
works by retrieving the AUID from the value and looking it up in the dictionary. It is required that the AUID
represent atype in the dictionary otherwise the fileisinvalid.

AAF Object Manager Design Specification Page 22
June 4, 2001 Avid Technology 11

This design satisfies the requirement that the type of a property does not change, since properties of thistype are
always described as AAFTypeDefIndirect.

This design allows the actual type of a property to vary on a property instance by property instance basis by storing
the AUID for the actual type along with the property value.

7.8.1.2 "private types"

These values are represented by AAFTypeDefPrivate. The design for AAFTypeDefPrivateisidentical to that of

AAFTypeDefIndirect except for the following

1) Vauesdescribed by AAFTypeDefPrivate also contain the byte order in which the property value was first
Created.

2) Properties vaues described by AAFTypeDefPrivate are only byte swapped by the Object Manager when accessed
by a party who knows the actual type.

3) The Actua Type() method can fail when applied to alegal file. This happensif party C (to whom the typeis
private) tries to access the property.

4) The Actual Type() method succeeds if the type definition corresponding to the AUID in the property valueisfirst
installed in the dictionary, for example by party B (to whom the type is not private).

7.8.1.3 "encrypted types™

These values are described by AAFTypeDefEncrypted. The design for AAFTypeDefEncrypted isidentical to that of

AAFTypeDefPrivate except for the following

1) Vauesdescribed by AAFTypeDefEncrypted also contain a GUID, for use by trusted parties to identify the
encryption method (or encryption key).

2) After calling Actua Type() trusted clients must first decrypt the data before using the actual type to interpret it..

7.8.1.4 "SMPTE KLV types"

These values are described by AAFTypeDefSMPTEKLYV. Values described by AAFTypeDef SMPTEKLV consist of

1) thebyte order in which the property value wasfirst created

2) the SMPTE valueV asavariably sized array of bytes

The class AAFTypeDef SMPTEKLYV has the following properties

1) the SMPTE key K as an unsigned integer

2) an AUID identifying the type of the value if such atype has been defined or, if not, identifying
AAFTypeDefOpaque (see below)

Properties values described by AAFTypeDef SMPTEKLYV are automatically byte swapped by the Object Manager just

like any other type (unlesstheir type is described by AAFTypeDefOpaque).

The class AAFTypeDef SMPTEKLV has a method, Actual Type() which returns the actual type of agiven value.

This works by looking up the AUID (a property of AAFTypeDefSMPTEKLV) in the dictionary.

Thus instances of AAFTypeDefSMPTEKLYV define a mapping from SMPTE keys onto AAF types that describe the

associated SMPTE values. Thisisamany to one mapping. That is, several different SMPTE keys may map to the

same AAF type.

Initially values can be described by AAFTypeDefOpaque, these can then later be described by appropriate AAF

predefined types without invalidating any previously stored values. In thisway AAF files may contain KLVswith

unknown keys (This is the whole purpose of KLV).

Note that the SMPTE length L is not stored explicitly, instead it is an attribute of the value.

7.8.1.5 AAFTypeDefOpaque

This type allows values whose type is unknown (temporarily or permanently) safely to be stored in AAF files. The
value of a property described by AAFTypeDefOpague consists of

1) thebyte order in which the property value wasfirst created

2) thevalueasavariably sized array of bytes.

7.9 Name Equivalence
Unfortunately the names for various Object Manager concepts have evolved differently in different documents. The
following table shows the equivalence between the various names.

Concept Object Original Latest SMPTE Symbolic Name
Spec SMPTE draft draft
Strong Reference ObjRef ObjRef StrongRef SF_STRONG_OBJECT_REFERENCE
General Weak Reference None None None None
AAF Object Manager Design Specification Page 23

June 4, 2001 Avid Technology 11

Restricted Weak Reference ObjRef RefAUID WeakRef SF_WEAK OBJECT_REFERENCE

Strong Reference Vector ObjRef ObjRefArray StrongRefArra | SF_STRONG_OBJECT_REFERENCE_VECTOR
y

General Weak Reference Vector | None None None None

Restricted Weak Reference ObjRef RefAUIDArra | WeakRefArray | SF_ WEAK_OBJECT_REFERENCE_VECTOR

Vector y

Strong Reference Set None None StrongRefSet SF_STRONG_OBJECT _REFERENCE_SET

General Weak Reference Set None None None None

Restricted Weak Reference Set None None WeakRefSet SF. WEAK OBJECT_REFERENCE_SET

AAF Object Manager Design Specification

June 4, 2001

Avid Technology

Page 24
11

8. Object Manager Design

The following sections describe the design of the principle aspects of the Object Manager.

8.1 Object Manager Interfaces
This section describes the interfaces to the Object Manager.

Access to most Object Manager functionality is provided implicitly from the perspective of tool kit clients.
Exceptions to this are the AAFSession, AAFile and AAFClassDictionary classes which allow tool kit clients
explicit access to Object Manager functionality.

8.1.1 Interfaces to Support the Tool Kit Implementation

The Object Manager will provide the following explicit interfaces for use by the implementation of the tool kit.

8.1.1.1 Definition Classes

The Object Manager must support both predefined and user defined AAF classes. This design proposes that
instances of AAF definition classes are used to represent both predefined and user defined AAF classes.

8.1.1.2 Equivalence of Predefined and User Defined AAF Classes

The AAFClassDictionary class manages instances of these definition classes. There is one instance of the
AAFClassDictionary class for each AAF file.

An application must register any extensions it makes to AAF with the tool kit. This design proposes that the same
underlying mechanism is used for registering both predefined and user defined AAF classes. This design also
proposes that the information for the definition of the predefined classes be derived from the same source as the
class declarations for the AAF classes. A set of preprocessor macros will be provided for use in declaring and
defining the predefined AAF classes. This set of macros will, in effect, call the same API functions that tool kit
clients will call when creating extension AAF classes. However, in the case of the predefined AAF classes, certain
optimizations will be provided. These optimizations include

1) No consistency checking at application run time, except in the debug version of the tool Kit.

2) Registration of predefined AAF classes takes place at compile time instead of at run time. This will be hidden
by the macros.

3) Instances of the definition objects that describe the predefined AAF classes will be shared across the class
dictionaries associated with different AAF files. If an application chooses to modify, by extension, an existing
definition, for example, by adding a property to one of the predefined AAF classes, then the definition object
will be copied prior to extension. This is an implementation of “copy on write” semantics.

4) Instances of the predefined definition classes are not persisted; this is the very definition of “predefined”. An
exception is the case of an extended predefined class.

The provided macros will include the following. See the source file AAFMet aDi ct i onary. h for more details.
1) AAF_TABLE BEQ N() - Begin a table of AAF class and property definitions.
2) AAF_TABLE ENIX) - End atable of AAF class and property definitions.

3) AAF_CLASS(nanme, id, parent) - Define an AAF class.

nane = the nanme of the class
id = the auid used to identify the class
AAF Object Manager Design Specification Page 25

June 4, 2001 Avid Technology 11

par ent = the i nmedi ate ancestor cl ass
4) AAF_CLASS END(nane) - End an AAF class definition.
name = the name of the class
5) AAF_CLASS SEPARATOR() - Separate one AAF class definition from another.

6) AAF_PROPERTY(name, id, tag, type, mandatory, container) - Define an AAF property.

nane = the name of the property

id = the auid used to identify the property
t ag = the short formof the id

type = the type of the property

mandatory = true if the property is mandatory

false if the property is optional
container = the class that defines this property

8.1.1.2.1 Class Definition
[TBS. This section will describe the API provided by the Object Manager for use in defining classes.]

8.1.1.2.2 Property Definition

[TBS. This section will describe the API provided by the Object Manager for use in defining properties.]

There will be no separate API for creating property definition objects. Property definition objects cannot be created
without reference to the class to which they belong.

8.1.1.3 Property Access

[TBS. This section will describe the API provided by the Object Manager for use in accessing properties.]
8.1.1.4 Media Stream Access

Clients of the tool kit will be able to access both external and embedded media data via the AAFMediaStream class.
Once an instance of the AAFMediaStream class has been created, internal and external media are accessed
transparently.

8.1.1.5 Media Stream Access Functions

[TBS. This section will describe the Object Manager interfaces that support the AAFMediaStream class.]
The Object Manager will provide the following operations on media streams.

Open

Close

Read

Write

Seek

GetPosition

SetPosition

NouakrwhE

8.1.2 Interfaces Used By The Object Manager

The Object Manager will use the interfaces described in the following sections.

8.1.2.1 Structured Storage

The Object Manager will use the IStorage and I1Stream interfaces and the StgOpenStorage and StgCreateDocfile
APIs. Only functionality supported by the reference implementation of Structured Storage will be used.

8.2 File Level Operations

The Object Manager provides the following file level operations.

AAF Object Manager Design Specification Page 26
June 4, 2001 Avid Technology 11

1) Open an existing file for reading only.

2) Open an existing file for modification.

3) Create an empty file.

4) Create a transient file.

5) Close an open file. On close no save is implied, changes to a file must be saved explicitly.
6) Save changes to an open file. That is, write out all dirty objects.

7) Control lazy loading. These modes must be specified when the file is opened. There are two levels of lazy
loading.

a) None (or eager loading) — the entire contents of the file is loaded when it is opened. That is, all strong
references are followed. This mode is useful, for example, in applications that cannot tolerate loading
delays while processing a group of objects. In this mode memory reclamation or “lazy unloading” is not
performed.

b) Obiject granularity (or lazy loading) — when an object is loaded, the whole object is loaded. This means
loading all properties except media. References are not followed. This mode is useful, for example, when
accessing all of the properties of a few of the objects in an AAF file. In this mode memory reclamation or
“lazy unloading” is performed.

8) Revert. Discard any changes made to the file since the last open or save operation.

8.2.1 Semantics of AAFFile::Save() and AAFFile::Close()

This section is a summary of the semantics of AAFFile::Save() and AAFFile::Close() as they relate to unsaved
changes and to read-only files. In this section client means AAF API client and not Object Manager client.

1) Clients should call AAFRoot::ReleaseReference() on the head object before calling AAFFile::Close().

2) AAFFile::Close() does not call AAFFile::Save().

3) To ensure that objects are saved clients must explicitly call AAFFile::Save() before calling AAFFile::Close().
This is because of point 2.

4) AAFile::Close() calls AAFRoot::ReleaseReference() on the head object.

5) AAFFile::Save() silently ignores unsaved objects (The objects are not saved and the HRESULT is success).

6) AAFFile::Save() on a read-only file always fails.

7) AAFFile::Save() on a transient file always fails.

8) AAFFile::Save() silently ignores unsaved objects associated with a read-only file. This is a consequence of
point 5 which applies equally to read-only and to writeable files.

9) An application may open a read-only file and modify the objects associated with that file. The modifications
cannot be saved to the original file (Because of point 6). The modifications must either be written to another
file with AAFFile::SaveAs() or moved/copied to another writeable file and then saved.

10) An application may discard all unsaved changes by calling AAFFile::Revert(), provided that the file was
opened in revertable mode.

11) Media data (essence) is treated as a special case.

a) Changes to media data are never revertable
b) Changes to media data take place immediately in advance of any call to AAFFile::Save()
c) Any attempt to write media data to or change media data in a read-only file fails immediately.

8.2.2 File Mode Flags

The following bits are defined in the modeFlags argument to the following calls
AAFFileOpenExistingRead ()
AAFFileOpenExistingModify()
AAFFileOpenNewModify ()

Public bit definitions
kAAFFileModeUnbuffered - to indicate buffered mode. Default is buffered.
kAAFFileModeRevertable - to indicate that Revert is possible on this file (for all changes except those to
essence).

AAF Object Manager Design Specification Page 27
June 4, 2001 Avid Technology 11

kAAFFileModeEagerLoad - to indicate that the objects in the file should all be loaded when the file is opened .
The default is lazy loading in which the objects are loaded on demand.

kAAFFileModeReclaimCleanObijects - to indicate that the memory associated with clean in-memory objects
may be relaimed. The default is never to reclaim the memory associated with clean objects.

Private bit definitions (to help with performance optimizations)
kAAFFileWriteProperties - to indicate that objects be written out one property at a time. The default is to write
whole objects. (undocumented)
kAAFFileModeKeepObjectsOpen - to indicate that the IStorage for all objects should be kept open. The default
is to keep the I1Storage for all objects closed, except during Save(). (undocumented).
kAAFFileModeWriteAllObjects - to indicate that the dirty bit be ignored on Save(). The default is to write
only dirty objects on Save(). (undocumented)
kAAFFileSeparateIndexAndValue - to indicate that the property set index and the property values of an object
be stored in separate IStreams. The default is to combine them into a single 1Stream. (undocumented)
kAAFFileModeUseLargeSectors - to indicate that the 4k (large) sector size implementation of structured storage
be used (if available). The default is to use the small sector size implementation. Warning - use of this flag
creates files that are incompatible with the small sector size implementation of structured storage
(undocumented).
KAAFFileCloseFailDirty — to indicate that Close() should fail if there are dirty objects. (undocumented)

8.3 Persistence Infrastructure
8.3.1 Persistence Rules by Type

The actions required to persist data depend upon the type of that data. The Object Manager needs to able to persist
the following classes of data

1. Property values. There are two kinds of property value
1.1. Ordinary property data, both simple and structured
1.2, Media data
2. Object references. There are six kinds of object reference
2.1. Strong object references
2.2. Strong object reference vectors
2.3. Strong object reference sets
2.4. Weak object references
2.5. Weak object reference vectors
2.6. Weak object reference sets

8.3.1.1 Property Values

The primitive, or built-in, types form the base vocabulary of types. All properties are defined in terms of the
primitive types.

8.3.1.1.1 Ordinary Property Data

Ordinary property data is stored in an IStream contained in the IStorage that represents the object that contains the
property data. The property index, in a separate index 1Stream, describes the offset and extent of the property data in
the property value IStream.

8.3.1.1.2 Media Data
Media data is stored in an IStream contained in the IStorage that represents the object that contains the media data.

8.3.1.2 Obiject References

Obiject references are the mechanism for describing associations between objects. All associations between objects
are described using object references.

8.3.1.2.1 Strong Object References

AAF Object Manager Design Specification Page 28
June 4, 2001 Avid Technology 11

A strong reference denotes containment and ownership of one object by another object.

To persist a strong object reference, the strong object reference is followed. If the referenced object is has not already
been persisted, it is persisted by applying these rules recursively. This is recursive persistence. In this design an
optimization to recursive persistence is proposed. All dirty objects can be found without traversing the entire tree of
strong references. The object directory contains one entry for each object that is in memory. Additionally the dirty
objects are tagged as such. Consulting the object directory allows all the dirty objects to be found without
traversing the entire tree of strong references.

8.3.1.2.2 Strong Object Reference Vectors
A strong object reference vector denotes containment and ownership of a collection of objects by another object.

A strong object vector is persisted by iterating over the elements of the vector and treating each as a strong object
reference.

8.3.1.2.3 Strong Object Reference Sets

8.3.1.2.4 Weak Object References

A weak reference denotes a general, possibly shared, association from one object to another.

To persist a weak object reference an external representation of the weak reference is persisted.

8.3.1.2.5 Weak Object Reference Vectors
[TBS.]

8.3.1.2.6 Weak Object Reference Sets
[TBS.]

8.3.1.3 Non-Persistent Data

Some attributes of persistent objects are not themselves persistent. Such attributes exist only to support in memory
access to persistent objects. Examples are

1. Class dictionary entries for predefined classes
2. Object contexts
3. Those portions of the Object Directory that manage in-memory objects

8.3.2 How Save Works

When an object is in the persistent store a record of its location in persistent store is maintained in the object
directory, a per-AAF file data structure. The object directory maps object references to the locations in persistent
store of the referenced objects. When a reference is followed during a save operation the object directory is consulted
first. If the referenced object is found in the object directory then its location in persistent store is returned and
written to the persistent store. If the object is not found in the object directory then a new entry is made in the
object directory and the object is written to persistent store by applying these rules recursively.

8.3.3 Saving a Single Object

This section will describe the steps performed by the Object Manager when saving a single object. This code exists
only on class OMStorable since it is the same for all classes.

voi d OVStorabl e: : save(voi d) const

{

store()->save(classld());
store()->save(_persistentProperties);

}

AAF Object Manager Design Specification Page 29
June 4, 2001 Avid Technology 11

8.3.4 How Restore Works

When an object is in memory a record of its location in memory is maintained in the object directory, a per-AAF
file data structure. The object directory maps object references to the locations in memory of the referenced objects.
When a reference is followed during a restore operation the object directory is consulted first. If the referenced object
is found in the object directory then its location in memory is returned as the result of the dereference operation. If
the object is not found in the object directory then the Class Factory is used to create an uninitialized object
instance of the appropriate sub-class. The location in memory of the newly created instance is entered into the object
directory and the object is initialized from persistent store by applying these rules recursively.

8.3.5 Restoring a Single Object
This section describes the steps performed by the Object Manager when restoring a single object. This code exists
only on class OMStorable since it is the same for all classes.

OWVBt or abl e* OVSt or abl e: : rest oreFrom(const OWVSt or abl e* cont ai ni ngQbj ect
const char* nane,
OVBt or edbj ect & s)

{
OMCl assl d cid;

s.restore(cid);

OWFile* f = containingObject->file();
OWVBt or abl e* obj ect = f->classFactory()->create(cid);

obj ect - >set Cont ai ni nghj ect (cont ai ni ngObj ect) ;
obj ect - >set Nanme(nane) ;
obj ect - >set St ore(&s) ;

f->objectDirectory()->i nsert(object->pathNane(), object);
obj ect - >rest or eCont ent sFrom(s) ;

return object;

8.3.6 Persisting References

8.3.6.1 Isomorphism

Supporting isomorphism means that

Multiple in-memory references to the same in-memory object must be persisted as on-disk references to the
same on-disk object.

Multiple on-disk reference to the same on-disk object must be restored as in-memaory references to the same in-
memory object.

This is implemented by consulting the object directory during the save and restore operations.

During a save operation the object directory is consulted to see if a given object instance has already been saved
and, if so, the object is not saved again.

During a restore operation the object directory is consulted to see if a given object instance has already been
restored and, if so, the object is not restored again.

AAF Object Manager Design Specification Page 30
June 4, 2001 Avid Technology 11

8.3.6.2 Circular References

Circular references are legal and the requirement for isomorphism means that they must be saved and restored. A
persistence implementation must not recur or loop infinitely when faced with a request to persist an object network
containing circular references. Persistence of circular references is implemented through the object directory, which
ensures that exactly one reference is followed when a given object is persisted, thus breaking the cycle.

8.3.6.3 Null References

It is legal for both strong and weak references to be null references. Null references are handled as a generalization of
object references. They are treated as if they were a reference to a fictional “null object”. During save each reference is
checked to see if it is a null reference and if so it is persisted as a reference to the “null object”. During restore
references to the null “object” are restored as null references.

8.4 Optional Properties
8.4.1 Data Manager View of Optional Properties

8.4.1.1 OMProperty Routines

class OwProperty {
public:

/1 @nenber Is this an optional property ?
/1 @ hi s const
bool isOptional (void) const;

/1l @nenber Is this optional property present ?
/1 @ hi s const
bool isPresent(void) const;

/1 @nenber Renove this optional property.
voi d renmove(void);

1

8.4.1.2 Routine semantics

1. A property is either optional, i sOpti onal () == true,orrequired, i sOptional () == fal se.

2. Anoptional property may be present, i sPresent () == true,orabsent,i sPresent() == fal se.

3. Itis aprogramming error to ask if a required property is present, since, by very definition, a required property

must be present.

An optional property may be removed, by calling r emove() .

It is a programming error to attempt to remove an optional property that is not present. It is also a

programming error to attempt to remove a required property.

6. Removing an optional property removes the value of that property from the in-memory and the on-disk
representations of the object that contains the property. Once a property has been removed the property value is
lost since the only way to make the property present again is to set the property to a new value thus destroying
the old value,

7. Setting the value of an absent optional property makes the property present.

o s

The routine pre and post conditions are summarized, more formally, as follows...

Routine | precondition | postcondition |

AAF Object Manager Design Specification Page 31
June 4, 2001 Avid Technology 11

| sOptional () none none

| sPresent () i sOptional () none

Renove() i sPresent () i sPresent ()
get property value | i sOpti onal () impliesi sPresent () none

set property value | none i sPresent ()

8.4.1.3 Validity Constraints

1) The concept of optionality is orthogonal to the concept of property value. Property values are subject to their
own independent set of validity constraints. In particular
a) A void strong reference property is different than an absent optional strong reference property.

b) A strong reference vector property with no elements (or with all void elements) is different than an absent
optional strong reference vector property.
c) Anull GUID is different than an absent weak reference property.

2) Itis, however, a programming error to attempt to remove an optional property that represents valid
containment. The DM must detach any contained objects before removing the optional property that contains
them. The cases are
a) A non-void OMStrongReferenceProperty.

b) An OMStrongReferenceVectorProperty containing any non-void elements.

8.4.1.4 Declaring an Optional Property

There is no declaritive interface for optionality. Optional properties must be declared in the same way as required
properties. The optionality of a property is defined when its containing object is created by

OVCl assFactory: : create(). The OMC assFact ory interface is defined by and used by the Object
Manager, it is implemented by the Data Manager class | npl AAFDi ct i onary using

AAFMet aDi cti onary. h)

8.4.1.5 Accessing an Optional Property

When the Data Manager sets the value of an optional property that is not present the Object Manager makes the
property present and sets it to the given value.

When reading an optional property the Data Manager must first check that the property is present. If the property is
not present the Data Manager may choose either to return a default value for the property (as illustrated in the
example) or to return a “property not present” error code.

cl ass Exanpl eBase ({
publi c:

virtual void setOptionallnteger32(const OVMUJI nt 32& i);
virtual void getOptionallnteger32(OMJnt32& i);

private:

OVFi xedSi zePr oper t y<OVUI nt 32> _optional I nteger32;
i

voi d Exanpl eBase: : set Opti onal I nt eger 32(const OVUI nt 32& i)
{

_optionallnteger32 = i;

}

voi d Exanpl eBase: : get Opti onal I nt eger 32(OMJI nt 32& i)
{

/1 1f the optional property is present then return its val ue
/1 otherw se return a default val ue.

AAF Object Manager Design Specification Page 32
June 4, 2001 Avid Technology 11

if (_optionallnteger32.isPresent()) {
i = _optionallnteger32;

} else {
i = 0;

}

}

8.4.1.6 Removing a Simple Optional Property
Removing the _opt i onal | nt eger 32 property is simply

_optional |l nteger32.renove();

8.4.1.7 Removing Optional Containment
Given the following property declaration...

OwVBt r ongRef er encePr oper t y<I npl AAFFoo> _opti onal Foo;
The property may be removed by...

| mpl AAFFoo* ol dFoo = _opti onal Foo. set Val ue(0);
_optional Foo. renove();
if (oldFoo !'= 0)

ol dFoo- >Rel easeRef erence();

8.4.1.8 On-Disk Implications

An optional property that is not present for a given object instance has no entry in the property index for that object.
That is, there is no on disk overhead for optional properties that are not present.

8.4.2 Validation

When checking objects for validity on save and restore, optional properties are, of course, permitted to be absent
from the property index.

8.4.3 Internals

On class OMProperty there are the following state variables

bool _isOptional;
bool _isPresent;

The class invariant includes
| NVARI ANT(" Mandat ory property present”, |IMPLIES(!isOptional (), isPresent()));

The OVPr oper t y instance representing a given optional property is always contained within the associated

OVPr opert ySet whether or not the associated property value is present. The OVPr opert ySet represents the
set of potential properties. Each OMPr oper t y instance records, through the i sPr esent state variable, whether
or not the property value is present.

The _i sOpti onal state variable is set at object creation time and cannot be changed.

The _i sPresent state variable is set whenever the property value is set (either by restore from disk or via the
OWPr oper ty interface), The i sPresent state variable is reset when r enove() is called and when, during
restore, the on-disk property index is found not to include that property.

AAF Object Manager Design Specification Page 33
June 4, 2001 Avid Technology 11

8.4.4 Dictionary

The dictionary (class ImplAAFDictionary), which implements OMCl assFact ory: : cr eat e(), is responsible for
properly initializing the properties of each newly created object according to the contents of
AAFMet aDi cti onary. h.

8.5 Mapping of AAF Objects to Structured Storage
The basic mapping of AAF Objects to structured storage is as follows

All AAF objects map to IStorages.

Contained property values are stored in a single contained 1Stream.

Contained AAF objects map to contained IStorages.

The IStorages and IStreams within a structured storage file form a tree. However, the objects associated with an
AAF file form a network. This apparent clash of structures is resolved in this design by requiring that every object
in the network, except the root object, have exactly one owner. That is, each object is contained within exactly one
other object. This relationship is implemented by strong object references. The number of strong references to an
object must always be one. When these conditions are met, the strong object references form a tree that includes all
objects. This tree maps directly on to the tree formed by the IStorages and 1Streams within a structured storage file.

Thus strong references are represented explicitly in memory and implicitly in the structured storage file.

Other, non-containing, non-owning, object associations are represented by weak references. There may be zero or
more weak references to an object. Weak references are represented explicitly in memory and explicitly in the
structured storage file.

8.5.1 Details of Mapping

1) Each AAF object is represented by a corresponding IStorage object. The class id of the AAF object is part of
the IStorage object and is part of the structured storage overhead.
2) Each IStorage contains an IStream called "property index" that describes the contents of the "property values"
IStream. The "property index" 1Stream contains a header followed by a counted array of structures.
a) The header has the format.
i) Byte order. Legal values are “II” = Intel (little-endian), ‘MM’ = Motorola (big-endian).
ii) Count of properties. The number of array elements that follow.
b) The counted array has the format with the following fields
i) Property id —an AUID that identifies this property.
ii) Property stored form - the structural “type” of the property. This indicates the meaning of the
information in the property values 1Stream. The valid property stored forms are
(1) SF_DATA
(2) SF_DATA_STREAM
(3) SF_STRONG_OBJECT REFERENCE
(4) SF_STRONG_OBJECT_REFERENCE_VECTOR
(5) SF_STRONG_OBJECT_REFERENCE_SET
(6) SF_WEAK_OBJECT_REFERENCE
(7) SF_WEAK_OBJECT_REFERENCE_VECTOR
(8) SF_WEAK_OBJECT_REFERENCE_SET
(9) SF_ WEAK_OBJECT_REFERENCE_STORED_OBJECT ID
(10) SF_UNIQUE_OBJECT_ID
(11) SF_OPAQUE_STREAM
(12) SF_UNIQUE_STRONG_OBJECT_REFERENCE_VECTOR
iii) Offset - the offset of the value of this property into the "property values” IStream.
iv) Length —the length of the value of this property in the “property values” IStream.
3) Each IStorage contains an IStream called "property values" containing the properties for this object. The
“property values” 1Stream consists of a sequence of property values.
4) Each contained object is stored in a sub-IStorage. The name of the IStorage is given by the value of an entry in
the "property values” IStream with a stored form of SF_STRONG_OBJECT_REFERENCE
5) Contained vectors of objects are represented as follows

AAF Object Manager Design Specification Page 34
June 4, 2001 Avid Technology 11

a) Each collection is described by an I1Stream with a name given by the value of an entry in the “property
values” IStream with a stored form of SF_STRONG_OBJECT_REFERENCE_VECTOR, if the value is
"foo", the stream is named “foo index”.

b) The content of this IStream is a counted array of local keys (integers), and a “high water mark”, indicating
the lowest unused local key.

c) Each local key is used to construct the name of the sub-IStorage corresponding to the object at that
position in the collection. If the value of the first local key in the array is 42 then the name of the sub-
IStorage used to store the first object in the collection is "foo{42}". The local keys are assigned in a non-
repeating ascending sequence, using the “high water mark”. The sequence of local keys is specific to this
collection. Local keys are assigned in this fashion to avoid having to rename any 1Storages when elements
are inserted into or removed from the collection.

6) Contained sets of objects are represented as follows. [TBS.]
7) Inter-object references are represented as follows

a) The value of an inter-object reference is the AUID of the referenced object.

b) Value corresponds to an entry in the "property values™ I1Stream with a stored form of
SF_WEAK_OBJECT_REFERENCE.

8) Vectors of inter-object references are represented as follows. [TBS.]
9) Sets of inter-object references are represented as follows. [TBS.]
10) Properties that are media data are represented as follows

a) The "value" of a media data property is the name of a sub-IStream containing that data.

b) The value corresponds to an entry in the "property values" 1Stream with a stored form of
SF_DATA_STREAM.

11) The unique strong reference set and vector contain uniquely identified objects that may be the target of a weak
reference.

12) Sets provide an efficient (binary tree search) lookup of object by guid. This is used to find a definition in the
dictionary given the AUID of the definition, and to find a Mob given a Mobld.

AAF Object Manager Design Specification Page 35
June 4, 2001 Avid Technology 11

8.5.2 Examples
8.5.2.1 An Instance of AAFSequence
Parent Storage (contains AUID_AAFSequence)
Stream "property index"
Header

XX [l byte ordering
X /I version number of this representation

4 /I count of properties

Index
Property (PID_) Stored Form (SF.) Offset Length
Component_DataDefinition DATA 00 16
Component_Length DATA 16 08
Sequence_Components STRONG_OBJECT_REFERENCE_VECTOR 24 11

Stream "property values"

Value

XXXXXXXXXXXXXXXXK /I AUID AAFComponent::DataKind
XXXXXXXX /[INT64 AAFComponent::Length
""components” /I STRING AAFSequence::Components

Stream "components index"

43 /1 high water mark

02 /I count of elements

42 Il local key of first element

13 /' local key of second (and last) element

Storage "components 42"
An instance of AAFComponent (or sub-class)
Storage "components 13"

An instance of AAFComponent (or sub-class)

AAF Object Manager Design Specification Page 36
June 4, 2001 Avid Technology 11

8.5.2.2 Example Dump
This example is the dump of an AAFSequence object (similar to the one above) by a low-level dump program.

/ Cont ent / Mobs{ 0}/ Sl ot s{ 0}/ Segnent
Dunmp of property index

(Byte order = little endian (native), Version = 7, Nunber of entries = 3)
property pid (hex) type of f set I ength
0 201 0 0 16
1 202 0 16 8
2 1001 2 24 11

Dunp of properties

property 0 (data)
0 el eb el 78 ef 6¢c d2 11 80 7d 00 60 08 14 3e 6f B O I S

property 1 (data)
0 32 00 00 00 00 00 00 OO0 2.......

property 2 (strong object reference vector)
0 43 6f 6d 70 6f 6e 65 6e 74 73 00 Conponent s.

/ Cont ent / Mobs{ 0}/ Sl ot s{ 0}/ Segnent / Conponent s
Dunp of vector index
(Hgh water mark = 5, Nunber of entries =5)
or di nal | ocal key

0: 0

A WNPRF
A WN P

8.5.2.3 Example Dump of a Set Index

Dunmp of set index
(Hgh water nark = 3, Nunber of entries = 3)

or di nal | ocal key references uni que key
0: 0 1 { ODLEDAOO- 7752- 11D3- 801D 080036210804}
1: 1 1 { ODLEDAO1- 7752- 11D3- 801D 080036210804}
2 2 1 { ODLEDAD2- 7752- 11D3- 801D 080036210804}

8.5.2.4 [Other Examples TBS.]

[TBS. As other examples of how AAF objects are mapped to structured storage are created they will be added here.]
8.5.3 Data Structures

This section describes the data structures used to map AAF object on to structure storage. Note that these are not the

actual data structures, they are provided for illustrative purposes only.
8.5.3.1 Integral Types

These types, assumed to be defined appropriately for a particular host, are used in subsequent declarations.
typedef ...Ul nt8§;

typedef ...Ul nt16;

typedef ...Ul nt32;

8.5.3.2 Property Index

8.5.3.2.1 Purpose

AAF Object Manager Design Specification Page 37
June 4, 2001 Avid Technology 11

The property index is an index into the property values in the property values stream.

8.5.3.2.2 External representation

An IStream called “property values” containing a Pr oper t yl ndexHeader followed by _ent r yCount
Propertyl ndexEnt ry structs.

8.5.3.2.3 Structure of Property Index Header
A Propertyl ndexHeader is defined as follows...

t ypedef struct Propertyl ndexHeader {
Untlé byteOrder;
U nt32 _fornmat Version;
U nt32 _entryCount;

} Propertyl ndexHeader;

The byt eOr der isthe byte order of

the remaining fields of the Pr oper t yl ndexHeader struct

the Propertyl ndexEntry structs that follow

the actual property data
The _f or mat Ver si on is version number of the stored format, this allows for otherwise incompatible changes to
the stored format.

The _ent r yCount is the number of Pr oper t yl ndexEnt ry structs that follow.

8.5.3.2.4 Structure of a Property Index Entry

typedef struct PropertylndexEntry {
U nt32 _pid;
U nt32 storedForm
U nt32 offset;
U nt32 _Ilength;
} Propertyl ndexEntry;

The _pi d is the id that describes the property. This is a shorthand version of the AUID that uniquely identifies
the property. Property ids are locally unique. For all predefined AAF properties the property id is the same in all
AAF files. For user defined extension properties the assigned property id may vary across files.

The _st or edFor midentifies the “type” of representation chosen for this property. This field describes how the
property value should be interpreted. Note that the stored form described here is not the data type of the property
value, rather it is the type of external representation employed. The data type of a given property value is implied by
the property ID. The actual data type of a property value may be determined by looking up the associated property

id in the AAFDictionary.

The _of f set is the byte offset of the property value in the property value stream.

The _I engt h is the length, in bytes, of the property value in the property value stream.

8.5.3.3 Strong Object Reference

8.5.3.3.1 Purpose
A single contained object.

8.5.3.3.2 External Representation

Stored form SF STRONG OBJECT REFERENCE

Property value name of object

AAF Object Manager Design Specification Page 38
June 4, 2001 Avid Technology 11

8.5.3.3.3 Structure of a Strong Object Reference
[TBS]

8.5.3.4 Strong Object Reference Vector

8.5.3.4.1 Purpose
An ordered collection of strongly referenced (contained) objects.

8.5.3.4.2 External Representation

Stored form SF STRONG OBJECT REFERENCE VECTOR
Property value name of vector

Set index name <name of vector> index

Set element name <name of vector>{<local key of element>}

Each vector index consists of a St r ongRef er enceVect or | ndexHeader followed by _ent r yCount
St r ongRef er enceVect or | ndexEnt ry structs.

8.5.3.4.3 Structure of a Strong Object Reference Vector Index Header
A St rongRef er enceVect or | ndexHeader is defined as follows...

t ypedef struct StrongReferenceVectorl ndexHeader {
U nt32 _entryCount;
U nt 32 _hi ghWat er Mar k;

} StrongRef erenceVect or | ndexHeader ;

The _hi ghWat er Mar k is the highest local key ever assigned to an element of this vector. It is one less than the
next local key that will be assigned in this vector.
The _ent ryCount is the number of Vect or | ndexEnt ry structs that follow.

8.5.3.4.4 Structure of a Strong Object Reference Vector Index Entry

typedef struct StrongReferenceVectorl ndexEntry {
U nt 32 _I ocal Key;
} StrongRef erenceVect orl ndexEntry;

The _| ocal Key uniquely identifies this strong reference within this collection independently of its position
within this collection. The _| ocal Key is used to form the name assigned to the element in this vector at the
corrseponding ordinal position. That is, the | ocal Key of the first St r ongRef er enceVect or | ndexEntry
is used to form the name of the first element in the vector and so on. The _| ocal Key is an insertion key.

8.5.3.5 Strong Object Reference Sets

8.5.3.5.1 Purpose

An unordered collection of strongly referenced (contained) uniquely identified objects, each of which can be
efficiently located by key - O(lg N)
the target of a weak reference

8.5.3.5.2 External Representation

Search key obtained from "object->identifier()"

Stored form SF STRONG OBJECT REFERENCE SET

Property value name of set

Set index hame <name of set> index

Set element name <name of set>{<local key of element>}

AAF Object Manager Design Specification Page 39
June 4, 2001 Avid Technology 11

StrongReferenceSetIndexEntry structs appear in the index in order of increasing key. If an application consuming the
set index wishes to construct a binary search tree, care must be taken not to invoke the worst case performance by
inserting the keys in order. One way to avoid this problem is to insert the keys in “binary search” order. That is the
middle key is inserted first then (recursively) all the keys below the middle key followed by (recursively) all the
keys above the middle key.

Each set index consists of a St r ongRef er enceSet | ndexHeader followed by _ent r yCount

St r onRef er enceSet | ndexEnt ry structs.

8.5.3.5.3 Structure of a Strong Object Reference Set Index Header

typedef struct StrongReferenceSet| ndexHeader ({
U nt32 _entryCount;
U nt 32 _hi ghWat er Mar k;
U nt32 _identificationPid;
Unt32 _identificationSize;
} StrongRef erenceSet | ndexHeader ;

The _identificati on field of St r onRef er enceSet | ndexEnt ry is the value of the property on the
contained objects with property id _i denti fi cati onPi d. Each_identificationinthe
St r ongRef er enceSet | ndexEnt ry structs that follows is _i denti fi cati onSi ze bytes in size.

8.5.3.5.4 Structure of a Strong Object Reference Set Index Entry

typedef struct StrongReferenceSet| ndexEntry {
Ul nt 32 _l ocal Key;
Ul nt 32 _referenceCount;
<variable> _identification;

} StrongRef erenceSet | ndexEntry;

The _referenceCount isthe count of weak references to this object. The type of the _i denti fi cati on
field varies from one instance of a StrongReferenceSet to another. The value of the _i denti fi cati on field
uniquely identifies this object within the set. It is the search key.

8.5.3.6 Weak Object Reference

8.5.3.6.1 Purpose

A weak object reference is a persistent data type that denotes a weak reference to a uniquely identified object. In
memory, weak references are similar to pointers. When persisted, weak references contain the unique identifier of the
referenced object.

8.5.3.6.2 External representation

Stored form | SF WEAK OBJECT REFERENCE

8.5.3.6.3 Structure of a Weak Object Reference
typedef struct WeakObj ect Reference {

Ul nt 32 _referencedPropertyl ndex;
Ul nt 32 _identificationPid,
Ul nt 32 _identificationSize;

<variable> _identification;
} WeakObj ect Ref erence;

The referencedPropertyl ndex is the index into the referenced property table of the name of the property (a
strong reference set) containing the referenced object. The type of the i denti fi cati on field varies from one

AAF Object Manager Design Specification Page 40
June 4, 2001 Avid Technology 11

instance of a Weak Obj ect Ref er ence to another. The _i denti fi cat i on field uniquely identifies the object
within the target set.

8.5.3.7 Weak Object Reference Vector

8.5.3.7.1 Purpose
An ordered collection of weak references.

8.5.3.7.2 External representation

Stored Form SF WEAK OBJECT REFERENCE VECTOR
Property value name of vector
Vector index name <name of vector> index

8.5.3.7.3 Structure of a Weak Reference Vector Index Header

typedef struct WeakRef erenceVect or | ndexHeader {
U nt32 _entryCount;
U nt32 _referencedPropertyl ndex;
U nt32 _identificationPid;
Unt32 _identificationSize;
} WeakRef er enceVect or | ndexHeader ;

8.5.3.7.4 Structure of a Weak Object Reference Vector Index Entry

t ypedef struct WeakRef erenceVectorl| ndexEntry {
<variable> _identification;
} WeakRef erenceVect or | ndexEntry;

8.5.3.8 Weak Obiject Reference Set

8.5.3.8.1 Purpose

An unordered collection of weakly referenced (not contained) uniquely identified objects, each of which can be
efficiently located by key - O(lg N)

8.5.3.8.2 External Representation

Search key obtained from "object->identifier()"

Stored form SF_ WEAK OBJECT REFERENCE_SET
Property value name of set

Set index name <name of set> index

8.5.3.8.3 Structure of a Weak Object Reference Set Index Header

typedef struct WeakRef erenceSet| ndexHeader {
sane as WeakRef er enceVect or | ndexHeader
} WeakRef er enceSet | ndexHeader ;

AAF Object Manager Design Specification Page 41
June 4, 2001 Avid Technology 11

8.5.3.8.4 Structure of a Weak Object Reference Set Index Entry

typedef struct WeakReferenceSetl|ndexEntry {
same as WakRef erenceVectorl ndexEntry ...
} WeakRef erenceSet | ndexEntry;

8.5.3.9 Stored Object Identification

8.5.3.9.1 Purpose

The purpose of this stored form is to
avoid storing an additional copy of information. The stored object identification is logically a property but is
physically stored as the IStorage class identifier for the I1Storage that represents the object.
treat object properties uniformly
The property value is the "IStorage class identifier". This value is set using 1Storage::SetClass() and obtained with
IStorage::Stat().
The meaning of a stored object identification (SF_ WEAK_REFERENCE_STORED_OBJECT _ID) is the same as
that of a weak reference (SF_WEAK_OBJECT_REFERENCE) except that the unique identifier of the referenced
object (The defining instance of ClassDefintion) is persisted differently.

8.5.3.9.2 External representation

Stored Form | SF WEAK REFERENCE _STORED OBJECT ID

8.5.3.10 Unique Obiject Identification

8.5.3.10.1 Purpose

The purpose of this stored form is to
avoid storing an additional copy of information. The unique object identification is logically a property but is
physically stored in the index of the collection of which the object is a member so that the collection may be
searched without having to load objects.
treat object properties uniformly

More [TBS.]

8.5.3.10.2 External Representation

Stored form [SE_ UNIQUE OBJECT ID

8.5.3.11 Opaque Stream

8.5.3.11.1 Purpose

The property value is a small (size is such that fit easily into memory) data stream. The contents of the data stream
are opaque to the Object Manager. Items of this type are not a part of the AAF object model. This stored form is
intended for use by Object Manager clients in defining such "standard" Structured Storage elements as the
"DocumentSummaryInformation" stream.

8.5.3.11.2 External Representation

Stored Form [SF OPAQUE STREAM

8.5.4 The Referenced-Properties Table

A weak object reference consists of

the AUID that uniquely identifies the referenced object

the name of the property that contains the referenced object.
The reference contains the name of the property that contains the referenced object in order to avoid having to search
through all uniquely identified objects or having to build a data structure whose size scales linearly with the number
of weakly referenced objects to support resolution of weak references.

AAF Object Manager Design Specification Page 42
June 4, 2001 Avid Technology 11

In order to avoid storing the actual name of the referenced property in each weak reference the name is stored once,
in the referenced-properties table, and the index of the name in the table is stored in the weak reference.

There is one referenced-properties table in each AAF file. The referenced-properties table is a stream called

“I'ref erenced rroperties”. The stream consists of a header followed by a string space. The _si ze field of
the header gives the size in bytes of the string space. The total size of the referenced-properties stream is_si ze +
si zeof (Ref erencedProperti esTabl eHeader), thatis, _size + 16 bytes.

8.5.4.1 The Referenced-Properties Table Header

typedef struct ReferencedPropertiesTabl eHeader {
U nt32 _count;
U nt32 _size;

} ReferencedPropertiesTabl eHeader;

The _count field holds the number of referenced-properties in the table. The _si ze field is the total size, in
bytes, of the string space that follows.

8.5.4.2 The Referenced-Properties Table String Space

The referenced-properties table string space is a sequence of null terminated characters strings each string names a
referenced property. The first string in the string space has index 0 in the referenced-properties table and so on.
8.5.4.3 The Referenced-Properties Table Validity constraints

The string space must contain exactly _count bytes that have the value 0. The length of the referenced-properties
stream must be _si ze + 16. Each of the strings in the string space must be unique. That is, no two strings may be
the same. Each of the strings in the string space must be used by some weak reference.

8.5.4.4 Scalability of the Referenced-Properties Table.

There are as many entries in the referenced-properties table as there are properties that contain weakly referenced
objects. For example, there is only one entry in the referenced-properties table for
/Di ctionary/ d assDefinitions eventhough there are many weak references to class definitions.

8.5.5 General Design Principles

1) The value of a weak reference is a pointer to the referenced object

2) An object may be loaded when either
a) the one and only strong reference to the object is followed
b) any weak reference to the object is followed

3) Only certain classes may be weakly referenced. Such objects are uniquely identified by UID. The unique
identifier is used (as a key) to
a) identify the object that is the target of a weak reference
b) identify the object within the collection in which it resides
c) identify the object within internal Object Manager data structures

4) By definition set elements are uniquely identified.

5) Elements in a strong reference set and in a unique strong reference vector are unique within their respective
containers by the definition of strong reference - there can be only one strong reference to a given object. This is
equivalent to "pointer identity".

6) Elements in a strong reference set and in a unique strong reference vector are unique within their respective
containers by GUID. That is, the GUID is used as a key.

7) Thereisno SF_UNIQUE_WEAK_ OBJECT_REFERENCE_VECTOR since weak references may not
themselves be the target of other weak references.

8) Weakly referencable objects have persisted reference counts. The reference count is persisted so that the
reachability (or liveness) of a given object may be determined without having to load objects to find all
references

9) The reference count is persisted in such a way that it can be manipulated without loading the object

10) Only objects with a non-zero weak reference count are persisted. This is the basis of implementing notions such
as "the dictionary contains only those definitions that are used in the file.”

11) All of the weak references within the same collection (weak reference set or weak reference vector) refer to
objects in the same target collection (strong reference set or unique strong reference vector)

AAF Object Manager Design Specification Page 43
June 4, 2001 Avid Technology 11

12) A mechanism will be provided to allow uniform iteration over all collections set/vector, strong/weak
unique/not unique

13) For uniquely identified objects the unique identifier is persisted separately from the object that it identifies.
This allows
a) building a binary search tree of objects without actually loading the objects from the file
b) determining if an object is present in a collection without causing objects to be loaded

14) There is no SF_UNIQUE_STRONG_REFERENCE since, in the current AAF object model there is no case in
which a single contained object is the target of a weak reference.

15) There is no SF_UNIQUE_STRONG_OBJECT_REFERENCE_SET since by definition the members of a set
are unique.

8.5.6 Extra Design Flexibility

This section describes some extra flexibility built into the low-level AAF stored format/Object Manager design and
that may be exploited in the future. This extra flexibility comes at a relatively small incremental (space and time)
cost and may provide some extra room for maneuver later.

8.5.6.1 Per-Object Byte Order

Although the AAF requirements state that all objects in a file are stored with the same byte order, the byte order is
specified on a per-object basis. This means that AAF could allow files containing a mixture of objects with different
byte orders if needed. This could make for faster edit in place of foreign files.

8.5.6.2 Per-Object Format Version

The stored format is versioned and the version is specified on a per-object basis. This means that objects of different
stored format versions could be allowed in the same file. This may have pay-back when, for example, both AAF
version 1.0 and AAF version 2.0 are in the field and a read-modify-write operation is performed on a version 1.0
file using a version 2.0 implementation. In this case the unmodified version 1.0 objects in the file would not have
to be converted to version 2.0 format.

8.5.7 Meta-data Byte Order

Although the AAF requirements for file byte order need not apply to the Object Manager meta-data, this design
chooses to apply the same rules. These are, in summary

1) When a file is created, the meta-data within it is created with the byte order of the host

2) When a file is modified the existing byte ordering of the meta-data is preserved

One consequence of these rules is that all property indexes in a given file have the same byte order.

8.5.8 Storage Overhead

There are currently the following categories of property each having a different mapping to structured storage.

Property Stored Form Meaning

SF DATA an ordinary property

SF STRONG OBJECT REFERENCE a contained object

SF STRONG OBJECT REFERENCE VECTOR a vector of contained objects
SF WEAK OBJECT REFERENCE a reference to an object
SF_DATA _STREAM media data

SF WEAK OBJECT REFERENCE VECTOR a vector of references to objects

8.5.8.1 General storage overhead

1) every object consists of
a) an IStorage
b) an IStream for all of the SF_DATA properties in that object called "property values"
c) an IStream for the property index called "property index"

AAF Object Manager Design Specification Page 44
June 4, 2001 Avid Technology 11

2) each property index has a fixed overhead of 10 bytes for the index header
a) byte order = 2 bytes
b) version = 4 bytes
c) number of properties = 4 bytes
3) each property index entry is 16 bytes in size
a) property id (identifies the property within the class of this object) = 4 bytes

b) property stored form (SF_ value) = 4 bytes
c) offset of the property value in the "property values" stream = 4 bytes
d) length of the property value in the "property values" stream = 4 bytes

4) each SF_STRONG_OBJECT_REFERENCE_VECTOR has an overhead of
a) an IStream for the vector index

5) each vector index has a fixed overhead of 8 bytes for the index header
a) high water mark = 4 bytes
b) number of elements= 4 bytes

6) each vector index entry is 4 byes in size
a) local key of element= 4 bytes

7) each SF_STRONG_OBJECT_REFERENCE_SET has an overhead of
a) an IStream for the set index

8) each set index has a fixed overhead of 8 bytes for the index header
a) high water mark = 4 bytes
b) number of elements= 4 bytes

9) each set index entry is 4 byes in size
a) local key of element= 4 bytes
b) unique identifier (key) of element (an AUID) = 16 bytes

8.5.8.2 Storage overhead for each property category

Object Manager Stored Form Overhead

SF DATA one property index entry

SF STRONG OBJECT REFERENCE one property index entry

SF STRONG OBJECT REFERENCE VECTOR one property index entry + one vector index

SF WEAK OBJECT REFERENCE one property index entry

SF_DATA _STREAM one property index entry + one IStream

SF WEAK OBJECT REFERENCE VECTOR TBD (will probably be one AUID, 16 bytes per reference)

8.5.8.3 Some formulas

Size of property index stream = 10 + (number of properties * 16)
Size of vector index.= 8 + (number of elements * 4)
8.5.8.4 Storage Optimizations

There are two storage optimizations planned for the Object Manager not listed above. The optimizations are

1) Ifaproperty value is smaller than the index overhead for the property value then the property value is stored in
the index itself. Property values stored this way are called immediate values. An index entry is 16 bytes of
which 8 bytes (4 bytes for the property id and 4 bytes for the property stored from) are still needed for
immediate values. This means property values 8 bytes in size or smaller may be stored as immediate values.
This optimization is only possible for property values whose size is implied by their type. As a consequence,
this optimization is only possible for fixed size property values. A property stored form of
SF_IMMEDIATE_DATA identifies immediate values. If all the properties of an object are immediate there is
no "property values" stream only a "property index stream".

2) If the sum of the size of the "property values" stream and the size of the "property index" stream is less than the
minimum stream size then both the property index and the property values are stored in the same stream. The
minimum stream size is reportedly 128 bytes. The stream is organized such that the property values follow the
property index. Such a combined stream is named "property index" in which case there is no "property values"

AAF Object Manager Design Specification Page 45
June 4, 2001 Avid Technology 11

stream. This means that all AAF file consumers may begin by opening the "property index" stream, which will
always be present.

These two optimizations, which may of course be combined in the same object, will result in a best case object
representation of one IStorage and one IStream.

We choose not to make these optimizations mandatory in order to support "edit in place” in which case changes
might cause an objects representation to flip in and out of the optimized state. Instead we make the optimizations
optional and provide separate mechanisms for casting an object in its canonical form.

Since these optimizations are not mandatory they introduce the possibility of alternate valid representations for the
same object. (This possibility is also introduced during "edit in place™ as such modifications may introduce
garbage). Object can be transformed to their canonical representation by copy() or move() operations.

In addition, the sizes of the fields in the data structures listed in section 8.4.3 are subject to change during
development based on measurements of real AAF files. For example the current definitions allow a 4Gb maximum
total size of property data (not counting media data) on a single object; this may be excessive.

8.5.9 Property Ids

The general form of a property id name is PID_<ClassName>_<PropertyName>. Some examples of property ids are

1) PID_Component_DataDefinition
2) PID_Component_Length
3) PID_Sequence_Components

8.5.10 Stored Class Ids

This note documents the mapping between SMPTE unique identifiers and AUIDs.
SMPTE has allocated a portion of a 16 byte namespace to AAF. The octets (bytes) are numbered from most to least
significant. Identifiers from this namespace are of the following form ...

SMPTE identifier

Octet # 0 1 2 3 4 5 6 7 8 9 10 |11 |12 | 13 | 14 [15

OctetValue | 06 | OE | 2B [34 01 [01 | 01 [XX | XX [XX | XX [XX] XX[XX] XX]|] XX

where XX denotes octets within the namespace that the definers of AAF are free to allocate. These octets have been
allocated in the spreadsheet as follows.

SMPTE identifier

Octet # 0 1 2 3 4 5 6 7 8 9 10 (11 (12 | 13 [14 | 15

Octet Value { 06 | OE (2B |34 (01 |01 (01 | $A [$B | $C [$D | $E [$SF | $G | $H | 8l

Where $A - $I represent the spreadsheet columns A - I. Note that spreadsheet column A is always 04.

To transform this into a AUID that we know won't collide with any other GUID we simply exchange octets 0-7
with octets 8-15. This works because GUIDs with the most significant bit of octet 8 set to 0 are reserved but will
never be allocated by the body that reserved them ! This gives ...

AUID

Octet # 0 1 2 3 4 5 6 7 8 9 10 (11 (12 | 13 [14 | 15

Octet Value [$B [$C [$D [$E [$F [$C [$H [$I [06 |OE [2B [34 |01 |01 |01 | $A

AAF Object Manager Design Specification Page 46
June 4, 2001 Avid Technology 11

Given that $A is always 04 this results in the following mapping from the spreadsheet to an AUID ...

AUID

Octet # 0 1 2 3 4 5 6 7 8 9 10 (11 |12 | 13 [14 | 15

Octet Value [$B [$C [$D [$E [$F [$G [$H [$I [06 [OE [2B (34 (01 {01 (01 [04

An AUID is defined using the DEFI NE_AUI D() macro as follows ($A - $I represent spreadsheet columns A-)...

DEFI NE_AUI D(nare,
OxBC$DSE,
O0xFG OxHSI,
0x06, OxOE, 0x2B, 0x34, 0x01, 0x01, 0x01, Ox$A)

8.5.10.1 Example

This example shows the spread sheet entry, the SMPTE identifier, the AUID and the initialization code for the class
AAFIdentification.

Spread sheet entry for AAFIdentification

Spreadsheet column [$A | $B [$C | $D | $SE [$F | $G [$H | $I

Column value 04 06 49 00 00 00 00 00 00

SMPTE identifier for AAFIdentification

Octet # 0 1 2 3 4 5 6 7 8 9 10 [11 (12 | 13 [14 | 15

Octet VValue [06 | OE | 2B |34 |01 |01 |01 |04 |06 (49 |00 (00 |00 (00 | 00O [OO

AUID for AAFIldentification

Octet # 0 1 2 3 4 5 6 7 8 9 10 |11 |12 | 13 | 14 [15

Octet Value [06 | 49 |00 |00 |00 | OO |00 | OO |06 [OE |2B (34 |01 [01 |01 [O04

The AUID for the class AAFIdentification would be declared (or defined — depending on the currently effective
definition of the macro DEFI NE_AUI D) as follows ...

DEFI NE_AUI D(AUl D_AAFI dent i fi cati on,
0x06490000,
0x0000, 0x0000,
0x06, OXOE, 0x2B, 0x34, 0x01, 0x01, 0x01, 0x04)

8.5.11 Code class ids vs. Stored class ids.

8.5.11.1 Requirements and motivation

AAF admits the possibility of alternate implementations than the reference implementation. This means that the
implementation of AAF that reads a file may not be the same implementation of AAF that wrote the file.

It is a requirement of interchange that AAF objects produced by different implementations be identified in the same
way. In other words, an AAFSourceClip is always identified in an AAF file in the same way, regardless of which
implementation of AAF created the file. An AAF object produced by one implementation should be identified in an
AAF file in exactly the same way as a logically identical object produced by another implementation.

Since end users will purchase applications from different vendors that use different implementations of AAF and
expect those applications to interoperate via AAF files we need to allow more than one implementation of AAF to
exist on the same system.

AAF Object Manager Design Specification Page 47
June 4, 2001 Avid Technology 11

8.5.11.2 Consequences

Taken together these factors result in a design in which the notion of a stored class id is different from the notion of
a code class id.

8.5.11.2.1 Stored class ids

Stored class ids identify the class of an AAF object and, for a given AAF class, are the same across all
implementations of AAF. Stored class ids are represented in the AAF object model by the ObjClass property of the
AAFInterchangeObject class.

8.5.11.2.2 Code class ids

Code class ids identify a class from a particular implementation of AAF. Each implementation is free to choose its
own mapping from stored class id to code class id when reading an AAF file (The simplest mapping is 1:1 with

the implementation providing a different class to handle each stored class id). Note that code class ids are equivalent
to COM class ids. COM class ids may be stored in a structured storage IStorage using IStorage::SetClass() and
retrieved using IStorage::Stat(). Structured storage always allocates space in the I1Storage for a code class id whether
or not anything is actually stored there.

8.5.11.3 Design Details
The following sections detail the design as manifest in the stored format and in the reference implementation code.

8.5.11.3.1 Stored Format Design Details

a) Only stored class ids are stored in an AAF file.

b) Code class ids are never stored in an AAF file.

c) To conserve space the stored class ids are stored in the IStorage representing the stored object using
IStorage::SetClass() and retrieved using IStorage::Stat(). i.e the proposal is to put the stored class id in the
place already allocated but more usually used for code class ids.

8.5.11.3.2 Reference Implementation Code Design Details

a) Each AAF class is assigned a stored class id, these ids are the same for all AAF implementations.

b) Each AAF class in the reference implementation is assigned a code class id, these ids are specific to the
reference implementation.

c) The stored class id is available from any AAF object via the AAFInterchangeObject::GetObjectClass() method.

d) When an object is persisted AAFInterchangeObject::GetObjectClass() (or equivalent) is called to obtain the
objects stored class id. This stored class id is written to the structured storage IStorage respesenting the object
using IStorage::SetClass().

e) When an object is "unpersisted" its stored class id is retrieved from the AAF file using IStorage::Stat(). The
stored class id is mapped to a code class id (via the AAFDictionary) so that an object instance appropriate to
the reference implementation can be created. Ultimately a call is made to CoCreatelnstance() passing in the code
class id.

8.5.11.4 Design Discussion
The following sections explore some some of the consequences of this design.

8.5.11.4.1 Putting the stored class id where the code class id should go

Although stored class ids are a distinct concept from code class ids the proposal is to store them in the place

normally reserved for code class ids (COM class ids). This proposal saves 16 bytes per object. There are some risks

associated with this

1) the risk of confusing stored class ids with code class ids

2) an attempt may be made to call OLELoad() or CreatelnstanceFromIStorage() on an IStorage in an AAF file.
These should and will fail but will they fail with an error code different than if nothing at all were stored in the
IStorage ?

8.5.11.4.2 Is This the Usual COM Practice?

It may be argued that this proposal is not in accordance with usual COM practice. That is true. However, this is not
intrinsic to this proposal but instead follows from the need to allow alternative implementations of AAF.

AAF Object Manager Design Specification Page 48
June 4, 2001 Avid Technology 11

[TBS quote from Microsoft dicumentation that says that the field in the IStorage is an “indication” of the owning
class.]

8.5.11.5 Design Alternatives
The following design alternatives were considered.

8.5.11.5.1 Use an Explicit Property for the Stored Object Id

Don't put any id in the I1Storage, instead represent the stored class id as an explicit property. This costs 16 bytes for
the stored class id plus 16 bytes overhead in the property index. This also means that the code reading the file has
to read the property index for an object before it can create that object. It also raises the issue of where in the index
this "special” property is stored. The benefit of this is that stored class ids can't be as easily confused with code
class ids since 1Storage::Stat() will always return a null code class id.

8.5.11.5.2 Use a File Local Identifier

Don't store a guid at all, but instead save space by storing a small integer in each object (or in the IStorage) that is
mapped to a stored class id. For extension classes that mapping is accomplished by a lookup table (or similar data
structure) that is also stored in the file (as part of the dictionary).

For extension classes the small integer has meaning only within a given file. That is, a different small integer may
be assigned if the object is copied to another file. Of course in the new file the newly assigned small integer will
map to the same stored class id.

For predefined classes the mapping is not persisted (just as for all other predefined dictionary entries) and predefined
classes are always assigned the same small integer.

This is essentially the same as my proposal for uniquely identifying properties without having to consume vast
amounts of space by storing a guid with each property.

8.5.12 Canonical Forms

The definition of the stored format presented here allows multiple respresentations of the same object. The multiple
representations arise for the following reasons —

1) There is no defined order for the properties of an object.
2) The property values in the property values stream need not be in the order specified in the property index.

3) The property values in the property values stream need not be contiguous. That is there may be gaps between
the values. This could arise, for example, if a value has been edited in place and shortened leaving a gap.

4) An optimization allows the property index and the property values to be stored in the same stream. This
optimization may or may not be applied to a particular object.

5) An optimization allows small property values to be stored in the property index. This optimization may or may
not be applied to a particular object.

This specification does not impose a canonical or preferred representation of persisted AAF objects. The Object
Manager must be prepared to accept all of the above variations on input. On output of a modified object the Object
Manager is not required to alter the representation of unchanged properties in order to create a canonical
representation of the object. When an object is first written to persistent store, for example as the result of a copy
operation, the Object Manager will create the object using the most compact representation possible. This enables
the creation of a simple application that reduces AAF files to their smallest possible size by simply copying all of
the contained objects.

8.5.13 Garbage Collection

Since the Object Manager supports edit in place, and since no canonical representation of objects is imposed,
garbage, or unused and unreachable space, may accumulate in the property value stream. Such unused and
unreachable space is permitted in an AAF file. The garbage is reclaimed when the object is copied. Such reclamation
would therefore also be achieved by the simple file compacting application mentioned above.

AAF Object Manager Design Specification Page 49
June 4, 2001 Avid Technology 11

8.5.14 Using This Mapping to Implement IPersistStorage

When using COM/OLE an object must be completely initialized by a call to its implementation of
IPersistStorage::Load. In this proposal the initial state for an object is found in more than a single 1Storage. The
AAF Class dictionary may also contain part of the initial state for an object. A utility function similar to OLELoad,
say AAFLoad, could be provided. The implementation of AAFLoad would have to

Read the class id from the IStorage representing the persisted object.

Consult the AAF class dictionary to find the creation function to use to create objects of that class.

Call the creation function.

Call IPersistStorage::Load which would create a partially initialized instance of the object.

Call the newly created objects “initialize” method, passing in a reference to the class dictionary. This method
would complete initialization of the object by referring to the class dictionary, for example, to turn type ids
into the corresponding AAFDefinition objects.

Note that once AAFLoad has completed the object is not entirely loaded into memory since the loading of some
properties may have been deferred because of lazy loading.

gprpOdE

8.5.15 Storage and Stream Names

This section describes the naming convention adopted for naming IStorages and IStreams with in a structured
storage file. The rules are as follows:

1) The root IStorage is called “/” and is the stored representation of the AAFHeader object.

2) An IStorage that represents a contained object is given the name of the property that it represents. For example,
the AAFHeader object contains an AAFDictionary object with property name “Dictionary” so the name of the
IStorage containing the stored representation of the AAFDictionary is “/Dictionary”.

3) All objects also contain an index to their properties. This index is stored in an IStream called “property index”.
Continuing the example, the property index I1Stream for the AAFDictionary is called “/Dictionary/property
index”.

4) If an object contains properties that are not themselves objects then the values of those properties are stored in
an IStream called “property values”. Continuing the example, the property value 1Stream for the
AAFDictionary is called “/Dictionary/property values”

5) If an object contains a strong reference vector (vector of contained objects) then the object will contain an index
for the vector stored in an IStream called “<VectorPropertyName> index”. Elements of the vector are stored
IStorages called “<VectorPropertyName>{<element name>}". Continuing the example, since the
AAFDictionary contains a strong reference property called “ClassDefinitions” consisting of
AAFClassDefinition objects the vector index stream will be called “/Dictionary/ClassDefinitions index”. Since
each element in the vector is an object the vector elements will be stored in IStorages named
“/Dictionary/ClassDefinitions{<element name>}". Where <element name> is a hexadecimal name that
identifies the element and is chosen such that elements don’t have to be renamed if insertions or deletions are
made to the vector. A vector index is mapped to its corresponding name by the vector index. There is not
currently a need to map from a name back to the corresponding index. However, this stored format design does
not preclude adding this in the future.

6) If an object contains a restricted weak reference vector (vector of referenced objects). [TBS. This section will
contain a description of the stored representation of restricted weak reference vectors.]

8.5.16 Storage of Object References and Object Reference Arrays

This section describes the details of how object references and object reference arrays are mapped to structured
storage.

AAF Object Manager Design Specification Page 50
June 4, 2001 Avid Technology 11

8.5.16.1 Strong References
Strong references denote containment. If an AAF object contains another AAF object the IStorage containing the

stored representation of the containing object has the IStorage containing the stored representation of the contained
object as a sub-storage.

8.5.16.2 Restricted Weak References

8.5.16.2.1 Restricted Weak References in the AAF Object Model
Instances of the following classes may be the target of weak references

1. Definition objects
DataDefinition
EffectDefinition
ClassDefinition
PropertyDefinition
TypeDefinition

2. Mobs
MasterMob
CompositionMob
SourceMob

3. Media
MediaData

8.5.16.2.2 Representation of Restricted Weak References

A weak reference to an object instance is stored as an AUID (GUID). To follow a weak reference the AUID is
looked up in a per-class data structure that maps AUIDs onto object instances of that class. These data structures are
part of the AAF object model and their persisted representation is described in the “Advanced Authoring Format
Object Specification”. For example, to find the Mob referenced by a given AUID that AUID must be looked up in a
run-time data structure the persisted representation of which is “/Header/Content/Mobs”.*

8.5.16.2.3 Implementation of Restricted Weak References

[TBS. This section will describe the implementation of restricted weak references.]

8.5.16.3 General Weak References

The AAF object model does not require general weak references. This design does, however, take them into account.
General weak references could be added to this design in a straightforward manner if this becomes a future
requirement. One possible approach to implementing general weak references would be to construct and store the
path name of the referenced object. The path name for an object instance could be formed from the names of the
properties that must be traversed to reach that object instance starting at the root. These path names would be
similar to the path names in a file system. General object references would have to be made invalid if their target is
moved or deleted.

8.5.17 Standard Streams

[TBS. This section will describe how standard streams, such as “Summarylnformation”, are supported.]
8.5.18 Class Dictionary

[TBS. This section will describe how the AAFClassDictionary class and the related definition classes are mapped to
structured storage. The definition classes are

' The notation “/Header/Content/Mobs” uses the IStorage and IStream naming convention described elsewhere in
this document. This convention generates path names for stored objects and properties from property names. The
property names are taken from the document “Proposed SMPTE Recommended Practice for Television —
Interchange of Video and Audio Material and Related Descriptive Information as Edit Decision Data”. This
document contains the most up-to-date description of the AAF stored object model.

AAF Object Manager Design Specification Page 51
June 4, 2001 Avid Technology 11

AAFDefinitionObject
AAFClassDefinition
AAFControlCodeDefinition
AAFDataDefinition
AAFEffectDefinition
AAFPropertyDefinition
AAFTypeDefinition]

8.5.19 Embedded Media

[TBS. This section will describe how embedded media is mapped to a structured storage file.]

8.5.20 Use Of Property Sets

[TBS. This design does not specify the use of property sets for representing stored objects. This section will
describe the rationale for this design decision.]

8.5.21 AAF File SMPTE Signature

Some notes on the header of a structured storage file

1) The StructureStorageHeader is always in Intel byte order

2) The version number is 3.62 on NT, Macintosh and in the reference implementation of Structured Storage on
Irix

3) StructuredStorageHeader._clid is null

4) A GUID may be written to StructuredStorageHeader._clid using fopen/fwrite

5) The presence of this GUID does not seem to affect StglsStorageFile() or StgOpenStorage() et. al

All valid AAF files contain a SMPTE unique identifier in the StructuredStorageHeader._clid field.

The following GUID identifies a file as an AAF file It is

1) placed in the _clid field of the structured storage file header

2) 16 bytes in size

3) alway in Intel (little-endian) byte order (consistent with the rest of the structured storage file header) stored at
byte offset 8 from the start of the file immediately follows the 8 byte structured storage file signature

/1 SWPTE identifier
/1 06 OE 2B 34 01 01 01 04 20 46 41 41 2E 31 20 30
/1
/1 AU D
/1 20 46 41 41 2E 31 20 30 06 OE 2B 34 01 01 01 04
/1
DEFI NE_AU D(AAFFi | eSi gnat ure,
0x20464141,
0x2E31, 0x2030,
0x06, OxOE, 0x2B, 0x34, 0x01, O0x01, O0x01, 0x04)

This GUID appears as follows when the file is dumped in ASCII.

$ dunp foo. aaf
0 do cf 11 e0 al bl 1a el 41 41 46 20 31 26 3020 AAF 1.0
16 06 Oe 2b 34 01 01 01 04 3e 00 03 00 fe ff 09 00 B R

8.6 Object Naming
[TBS. This section will describe the support provided by the Object Manager for naming objects. Object naming is
used to support SMPTE Unique Labels (SULs) and SMPTE Unique Material Identifiers (UMIDs).]

AAF Object Manager Design Specification Page 52
June 4, 2001 Avid Technology 11

8.7 Lazy Loading and Memory Reclamation
In this design lazy loading and memory reclamation are integrated with object references.

8.7.1 Lazy Loading

When an object is first created in memory from its persistent form on disk, only the primitive attributes are read.

Resolved object references are initialized to refer to the appropriate in-memory object. Unresolved object references
are not initially followed in the hope that the object to which they refer will not be needed, hence the term “lazy
loading”. Instead, unresolved object references are followed on demand. Following an unresolved object reference
involves locating the referred to object in the object store, creating that object in memory and then initializing the
reference to refer to the in-memory object. Lazy loading allows us to avoid doing this work if the referred to object
is never needed. With respect to lazy loading, strong and weak object references are treated identically.

The Object Manager integrates lazy loading with object references. In this design an object reference may have the
following states.

1. Void: no object is referenced. Void references are never followed.
2. Unresolved, object not loaded: refers to an object in the persistent store, that object does not exist in memory.

3. Unresolved, object loaded: refers to an object in the persistent store, that object exists in memory. When a
reference in this state is followed it will be resolved to the in memory object. Note that when an object
reference is in this state, the in-memory and persistent store instances of the referenced object may have different
contents. This situation will occur if the in-memory object has been modified and has not yet been written out
to persistent store. That is, when the in-memory instance of the referenced object is dirty.

4. Resolved, object not loaded: In this state the reference is stale and the object is reloaded.

Resolved, object loaded: in this state the referenced object is in memory and no work is needed when the
reference is followed.

Note that every time a reference is followed the object directory is consulted to determine whether or not the object
is loaded.

8.7.2 Memory Reclamation

Memory used by objects may be reclaimed once those objects have been written to persistent store. If this is
performed via an object reference then the state of the reference will transition from “resolved” to “unresolved, object
not loaded”. Note that this may cause other references to this object to transition from “resolved, object loaded” to
“resolved, object not loaded”.

Memory reclamation may be performed when
immediately complying with a request to load an object would exhaust free store
free store is exhausted
on demand

free store utilization has reached a predetermined limit

8.8 Transient Objects

Transient objects are not associated with an object store. The state of a transient object is not saved across
application invocations.

8.8.1 Rules for Combining Transient and Persistent Objects

1. Mixing objects from different object stores is not allowed.
2. A transient object may contain strong references only to other transient objects.

AAF Object Manager Design Specification Page 53
June 4, 2001 Avid Technology 11

3. Atransient object may contain weak references to either transient or persistent objects. Note that this means that
a weak reference from a transient object will become invalid when the object store with which the referred to
object is associated is closed.

4. A persistent object may contain strong references only to other persistent objects associated with the same
object store.

5. A persistent object may contain weak references only to other persistent objects associated with the same object
store.

6. Inserting a transient object into a persistent container object makes that object and recursively all objects that it
references, persistent.

Transience is transitive over strong references. Persistence is transitive over both strong and weak references.
These rules are designed so that

1. Starting with a persistent object and recursively following all references, both strong and weak, one will
encounter only persistent objects.

2. Every persistent object is referred to by at least one strong reference.

These conditions are necessary for transient objects to coexist with a correct implementation of recursive persistence.
8.8.2 How These Rules Are Implemented

An object belongs to the same file as the object that contains it. In that way objects from different files cannot be
combined, and moving an object from one file to another can be accomplished by simple reattachment.

An object is transient if its containing object is transient, and persistent if its containing object is persistent. In that
way persistent and transient object cannot be incorrectly combined, and changing the state (persistent vs. transient)
of an object can be accomplished by simple reattachment.

8.9 Deleting Objects From an AAF File
[TBS. This section will describe how the Object Manager supports deleting objects from an AAF file.]

8.10 Copying Objects From One AAF File to Another

[TBS. This section will describe how the Object Manager supports copying objects from one AAF file to another.]

[Issues : Have to deal with 1) restricted weak references (including dictionary entries) 2) byte swapping if the source
and target have different endianness.]

8.11 Moving Objects From One AAF File to Another

[TBS. This section will describe how the Object Manager Supports moving objects from one AAF file to another.]

8.12 COM Reference Counting

Since a design goal of the Object Manager is for transparency, the Data Manager code must treat the objects
defined by the following two declarations identically...

| npl AAFConponent * _conponent 1,
OwVBt r ongRef er encePr oper t y<I npl AAFConponent > _conponent 2;

Since the COM rules require the Data Manager code to reference count _conponent 1 the transparency
requirement means that the Data Manager code is also required to reference count _conponent 2.

Transparency also requires that the Data Manager code must treat the objects defined by the following two
declarations identically...

| mpl AAFConponent * _conponent s1[Sl ZE] ;
Owvst r ongRef er enceVect or Proper t y<I npl AAFConponent > _conponent s2;

AAF Object Manager Design Specification Page 54
June 4, 2001 Avid Technology 11

Since the COM rules require the Data Manager code to reference count _conponent s1 the transparency
requirement means that the Data Manager code is also required to reference count _conponent s2.

Since correct reference counting mujst be implemented by the Data Manager, the Object Manager does no COM
reference counting, in fact it designed indepently of whether it is managing COM or non-COM objects.

8.13 Object Directory

The object directory is a data structure that efficiently maps keys onto values. Possible implementations include a
binary tree or a hash table. The key is an integer value, unique to a particular object directory that identifies a
particular object in the table. Operations available on the object directory include

store a value under a given key
retrieve the value associated with a given key
remove the value associated with a given key
The value stores the following information under each key
the location in memory where the object was loaded
the storage location from which the object was loaded
validity information - “is the object loaded ?”, reference counts

The object directory is a per AAF file data structure. Note that there is not necessarily an entry in the object
directory for each AAF object in a file. Entries are made in the directory as AAF objects are loaded. Entries are
removed from the directory when they are no longer needed, for example, when an object is deleted.

Obiject references are implemented as keys that are valid in the appropriate object dictionary.
[TBS. More detail on the object directory will be provided here.]

8.14 Schema Evolution

[TBS. This section will describe how the Object Manager will support schema evolution - changes to the AAF
object model and class hierarchy over time.]

8.15 Multiple Open AAF Files

[TBS. This section will describe how the Object Manager will support having more than one AAF file open at the
same time.]

8.16 Shared Access to AAF Files

This section describes the support provided by the Object Manager for shared access to AAF files. It addresses such
issues as the supported mixes of readers and writers. [TBS. Eventually this section will also address such issues as
multi-thread and multi-process access and remote access.]

It is currrently possible to have an AAF file open multiple times for read only, with no writers. If an AAF file is
open for write it may not be opened again either for read or for write. The longer-term intent is to also allow
multiple readers with one writer.

If a reader is allowed to accesses a file that is being changed the issue of consistency arises. The AAF goal is to
provide consistency at the object level. That is, the reader would see individual objects as they existed before or
after a given change but not during a change.

Note that this would not mean that the reader would have a consistent view of the file. For example, the writer may
delete an object, and all references to it, from the file but cannot do this atomically.

In order to provide object level consistency AAF file data (property values) and the AAF file meta-data (property
indexes, vector and set indexes) need to be updated atomically.

While Microsoft's implementation of structured storage does provied a transacted mode on Microsoft platforms it
does not do so on non-Microsoft platforms (Unix and Macintosh for example where the referenec implementation of
structured storage is used). This means we need to "roll our own" object level transactions within AAF.

8.17 Class Dictionary

AAF Object Manager Design Specification Page 55
June 4, 2001 Avid Technology 11

[TBS. This section will describe the design of the class dictionary component of the Object Manager.]

8.18 Object Lifetimes

[TBS. This section will describe the support provided by the Object Manager for managing object lifetimes through
the use of reference counts.]

8.19 Media Streaming

[TBS. This section will describe Object Manager support for media streaming an will address issues such as
structured storage stream alignment.]

8.20 Handling Failures

[TBS. This section will describe the detection and handling of errors within the Object Manager. It will also
describe how those errors are reported to the clients of the Object Manager.]

8.20.1 Out of Disk Space

This error condition is of particular concern if it occurs while holding dirty objects.
[More TBS]

8.20.2 Out of Free Store

If this error condition occurs while holding dirty objects it must be possible to save them to disk without needing
to consume additional free store.

[More TBS]
8.21 Testing

[TBS. We want to create a design that can be tested, describe how the implementation will be tested.]

8.22 Debugging

[TBS. We want to create a design that can be debugged, describe how the implementation will be debugged.]

8.23 Assertions
8.23.1 Overview Of Assertions

The AAF Object Manager makes extensive use of assertions. Monitoring of the assertions is enabled by the
compilation symbol OM_ENABLE_DEBUG. The debug configuration of the AAF reference implementation defines
this symbol.

The Object Manager bases its use of assertions on the concept of design by contract as described in Object Oriented
Software Construction 2™ Ed. (by Bertrand Meyer). See Chapter 11 “Design by Contract: Building Reliable
Software”.

8.23.1.1 Simple Assertions

[TBS. Describe simple assertions]

8.23.1.2 Routine Preconditions

[TBS. Describe routine preconditions]

8.23.1.3 Routine Postconditions

[TBS. Describe routine postconditions]

8.23.1.4 Routine Tracing

[TBS. Describe routine tracing]

AAF Object Manager Design Specification Page 56
June 4, 2001 Avid Technology 11

8.23.2 Assertion Violation Backstop

8.23.2.1 Overview

The Object Manager behavior on an assertion violation is customizable (at compile time) but the default behavior
on assertion violation is to throw an exception. However, such an exception cannot be allowed to propagate to the
client code, so an assertion violation backstop is implemented.

The elements of the design are...

An AAF_| NTERNAL ERROR code is defined

An OVAsserti onVi ol at i on class is defined

The OMAsserti onVi ol ati on is private to the Object Manager

The Object Manager throws an instance of OMAsser ti onVi ol at i on when an assertion violation occurrs
The OMAsserti onVi ol at i on exception is not caught; instead it is allowed to hit the backstop.

The backstop code is in the dodo generated com-api files (e.g. CAAFHeader . cpp). The backstop code catches
the OMAsserti onVi ol ati on exception and returns the AAF_| NTERNAL _ERROR code.

8. 23. 2. 2 Example Dodo Generated Code

cl ass OMAssertionViolation; // Opaque

HRESULT STDMETHODCALLTYPE
CAAFHeader : : LookupMob (aaf U Dt * pMobl D, | AAFMob ** ppMbb)

{
HRESULT hr;
| mpl AAFMDb * i nt er nal ppMob = NULL;
| mpl AAFMbb ** pi nt er nal ppMob = NULL;
if (ppMob)
{
pi nt er nal ppMob = &i nt er nal ppMob;
}
try {

hr = ptr->LookupMb (pMobl D, pinternal ppMob);
} catch (OVAssertionViolation&) ({

hr = AAF_I NTERNAL_ERROR;
}

return hr;

9. Notes for Developers of Object Manager Client Code

This section contains notes useful for developers writing Object Manager client code. In particular it addresses
developers responsible for moving existing OMF code into the AAF Data Manager.

9.1 Cookbook for making Properties Persistent

This cookbook assumes you want to implement the (fictitious) class AAFFoo and already have the converted (from
OMFI) code for the class. Also see | npl AAFHeader . { cpp| h} and| npl AAFI denti fi cation. {cpp| h}

for examples of classes where the properties have already been made persistent. Y ou are a so referred to section 6 of
the"AAF Object Manager Design Specification”.

AAF Object Manager Design Specification Page 57
June 4, 2001 Avid Technology 11

Please note that, since some of the current Object Manager interfaces are still prototypes that
(@ Thiscookbook is not yet as simple asit should be.

(b) These instructions are subject to change - see tags of the form [CHANGE COMING.:...].
9.1.1 Recipe (for the developer)

9.1.1.1 Use property declaration templates.
The following table illustrates the types to use.

SMPTE spec Type Object Manager

Simple scalar OVFi xedSi zePropert y<>

Simple st r uct OVFi xedSi zePropert y<>

Unicode string (wchar t *) OMW deStri ngProperty

String OVBt ri ngProperty

Array OVAr r ayProperty<>
St r ongRef Strong reference OVBt r ongRef er encePr opert y<>
St rongRef Arr ay Strong reference vector OVSt r ongRef er enceVect or Propert y<>
St r ongRef Set Strong reference set OVSt r ongRef er enceSet Propert y<>
Weak Ref Weak reference OMNeakRef er encePropert y<>
WeakRef Array Weak reference vector OWMA\eakRef er enceVect or Property<>
WeakRef Set Weak reference set OWMN\éakRef er enceSet Propert y<>

Note that OMAr r ay Pr oper t y<> is not yet implemented, please use OVFi xedSi zePr opert y<> instead.
The Object Manager does not yet support the notion of sets and so OVt r ongRef er enceSet Pr opert y<>
and OMeakRef er enceSet Pr opert y<> are not yet implemented. Instead please use

OVBt r ongRef er enceVect or Propert y<> and OMMakRef er enceVect or Propert y<>.

The Object Manager support for integrated weak references is not yet complete so please use

OVFi xedSi zePr opert y<> instead.

These templ ates are designed to provide access to persistent properties equivalent to non-persistent properties. That
is, everything that may be doneto f 001 (see below) may also be doneto f 002 using exactly the same code. Y ou
should not have to explicitly call member functions on OVF Pr oper t y classes.

Foo fool;
OVFi xedSi zePr opert y<Foo> fo002;

Assuming that class AAFFoo has properties Appl e and Pear .

OVFi xedSi zePr opert y<Appl e> _appl ¢;
OVWFi xedSi zeProperty<Pear> _pear;

Notethat in
OwVBt r ongRef er encePr opert y<AAFoo> f;
AAFFoo* _g;

Theentity f andtheentity g behaveidentically except that the object designated by f is persistent whereas the
onedesignated by g is not.

Note also that the following are also equivalent except for persistence

OwvBt r ongRef er enceVect or Proper t y<AAFFoo> _v;
AAFoo* W SI ZF] ;

AAF Object Manager Design Specification Page 58
June 4, 2001 Avid Technology 11

9.1.1.2 Define property ids

Give each property asmall integer (PID or "property id") and a name to identify it.

The integers must be unique within a property set instance. Since derived classes share the same property set as their
base classes this means that the PIDs must be unique across a class and all of its base classes. If thisruleisviolated
you'll get an assertion failure like the following...

Precondition "Property not already installed" failed in routine
"OVPropertySet:: put".

Y ou can do arun time check by running the COMModTestAAF application.
The names should be constructed as follows PID_<className>_<propertyname> (Please use the property names
from the SMPTE spec as these reflect the most recent improvements to the AAF object model.)

3,
14;

const int PID FOO APPLE
const int PID FOO PEAR

9.1.1.3 Initialize the Properties

Each property should be initialized with a property id and a name. Use the property names as given in the object
specification.

| mpl AAFFoo: : | npl AAFFoo()
_appl e(PI D_FOO _APPLE, "apple"),
_pear(PID FOO PEAR, ‘"pear")

{

9.1.1.4 Initialize the Property Set (_per si st ent Properti es)
| mpl AAFFoo: : | npl AAFFoo()

_persistentProperties. put(_apple.address());
_persistentProperties. put(_pear.address());

}

The property setiscalled _persi st ent Properti es andisinherited by all AAF classes from
OVBt or abl e vial mpl AAFObj ect .

9.1.2 Recipe (for the dodo tool)

9.1.2.1 Include the Appropriate Header Files

Dodo should have already done this for you. In your implementation header file, | npl AAFFoo. h, include
| mpl AAFChj ect . h and OMPr operty. h

9.1.2.2 Declare the Class to be Storable

Dodo should have already done this for you. Invoke the macro OVDECLARE_STORABLE() [defined in
QOWVEBt or abl e. h] in the public part of the | npl class declaration. Note that the macro invocation is not
terminated with a semi-colon.

cl ass | npl AAFFoo {
publi c:

OVDECLARE_STORABLE(| npl AAFF00)

AAF Object Manager Design Specification Page 59
June 4, 2001 Avid Technology 11

private:
1

9.1.2.3 Define OMSt or abl e Overrides
Dodo should have already done this for you. In the | npl AAFFoo. cpp file add the following...

extern "C' const aafCl assl Dt CLSID AAFFoo0;

OVDEFI NE_STCRABLE(| mpl AAFFoo, CLSI D_AAFFo00) ;

9.1.3 COM Reference Counting

9.1.3.1 An Example

The following is an example that defines a new type of segment that contains a single strong reference to a Foo
object (an | mpl AAFFoo pointer) and a vector of strong references to Bar objects (an array of | npl AAFFoo
pointers). Both | npl AAFFoo and | npl AAFBar are subclasses of | npl AAFCbj ect . The example illustrates the
reference counting requirements on the Data Manager code. Please note that this example code has not been
compiled.

The reference counting functions are Acqui r eRef erence(), Rel easeRef erence() and
Ref er enceCount () for all classes derived from either | npl AAFRoot or AAFRoot .

Observing the protocol shown in this example has the following benefits
1. Obeys all the COM reference counting rules
2. Prevents objects that are not in memory from being lazily loaded just so that they can be released.

3. Enables the Object Manager to check for and complain about strongly referenced objects that are deleted.

The reference counting rules shown in this example are the same rules that would apply if the following alternate
declarations for_f oo and _bar s were used.

| mpl AAFFoo* f oo;
| mpl AAFBar * _bar s[MAXSI ZE] ;

9.1.3.1.1 Class Declaration

cl ass | npl AAFFoo;
cl ass | npl AAFBar ;

cl ass | npl AAFExanpl e : public I npl AAFSegment

{
publi c:

| mpl AAFExanpl e() ;
pr ot ect ed:

~I mpl AAFExanpl e() ;
publi c:

voi d Set Foo(| npl AAFFoo* f);
voi d Get Foo(| npl AAFFoo** f);

AAF Object Manager Design Specification Page 60
June 4, 2001 Avid Technology 11

voi d AppendBar (| npl AAFBar * f);
voi d GetBar At (I npl AAFBar** f, aafU nt32 n);

| mpl AAFBar * Fi ndBar (bool (Fi ndProc*) (I npl AAFBar* b)

voi d AppendNewBar (voi d) ;

private:
OwVBt r ongRef er encePr oper t y<I npl AAFFoo>

OwvBt r ongRef er enceVect or Propert y<Il npl AAFBar > _bars;

b

9.1.3.1.2 Class Definition

| npl AAFExanpl e: : | mpl AAFExanpl e()
_foo(PID EXAMPLE _FOO, "foo"),
_bar s(PI D_EXAMPLE_BARS, "bars")

{

}

| mpl AAFExanpl e: : ~I npl AAFExanpl e()
{
/1 Delete the contained Foo.
| mpl AAFFoo* ol dFoo = _foo. set Val ue(0);
if (oldFoo != 0)
ol dFoo- >Rel easeRef erence();

/] Delete the contained array of Bars.
size_t count = _bars.getSize();
for (size_t i =0; i < count; i++) {
| mpl AAFBar * ol dBar = _bars. set Val ueAt (0,
if (oldBar !'= 0)
ol dBar - >Rel easeRef erence();
}
}

voi d | mpl AAFExanpl e: : Set Foo(| npl AAFFoo* f)
{
| mpl AAFFoo* ol dFoo = _foo. set Val ue(f);
if (oldFoo != 0)
ol dFoo- >Rel easeRef erence();

if (f 1'=0)
f->Acqui reRef erence();

}
voi d | npl AAFExanpl e: : Get Foo(| npl AAFFoo** f)
{

*f = foo;

if (foo !=0)

_foo->Acqui reRef erence();
}

findProc);

AAF Object Manager Design Specification
June 4, 2001 Avid Technology

Page 61
11

voi d | npl AAFExanpl e: : AppendBar (| npl AAFBar * b)

if (b!=0) {
_bars. appendVal ue(b);
b- >Acqui r eRef erence();
}
}

voi d | npl AAFExanpl e: : Get Bar At (| npl AAFFoo** f, aaf Ul nt32 n)

{
| mpl AAFBar* t = O;

_bars. getVal ueAt (t, n);
*f o=t

if (t !'=0)
t->Acqui reRef erence();

}

| mpl AAFBar * | npl AAFExanpl e: : Fi ndBar (
bool (FindProc*) (I npl AAFBar* b) findProc)
{

| mpl AAFBar* b = O;
size_ t count = _bars.getSize();
for (size_t i =0; i < count; i++) {
_bars. getVal ueAt (b, i);
if (b!=0) {
if (findProc(b)) {
b- >Acqui r eRef erence();
return b;
}
}
}

return O;

}

voi d | npl AAFExanpl e: : AppendNewBar (voi d)

/1 To be supplied
}

9.1.4 Notes

When compiling make sure your include path specifies i ncl ude/ OMand sr ¢/ OM This is a temporary measure
the goal is to require that only include/lOM be specified. The checked-in projects do this already. [CHANGE
COMING: In future the OM source fileswill be organized such that you'll only have to specify include/OM]

9.2 Changing Property Types

Here are some things to remember if you either

1. change the definition of a type when there are persistent properties of that type or

2. change the type of a persistent property

An example of 1 would be a change in the definition of aafTimeStamp_t (as was done recently). The _lastModified
property of class AAFHeader is of type aafTimeStamp _t.

AAF Object Manager Design Specification Page 62
June 4, 2001 Avid Technology 11

A hypothetical example of 2 would be to change the declaration of the lastModified property of class AAFHeader
from

OVFi xedSi zeProperty<aaf TineStanp_t> | ast Modi fi ed,;

to

OVFi xedSi zePr opert y<UGLY_SMPTE_HEXCodedTi neSt anp_t > | ast Modi fi ed,;

The AAF Object Model, and as a consequence the Object Manager design and implementation, assumes that the
type of a property, identified by a given property id, does not change over time. Or put another way, the Object
Manager assumes that it can tell the type of a property data value stored in an AAF file from the associated stored
property id.

So if an AAF file is created with a PID (property id) that corresponds to a given type, errors will occur if that file is
read in by a toolkit compiled with a different definition of that type. Currently the error is detected only if the size
of the type is changed. If the type is changed but the size remains the same, values in "old" files will be silently
(and incorrectly) interpreted as values of the new type.

If you see the following error when you try to run either "ComAAFInfo" or "CppAAFInfo"

Assertion "Sizes match" failed in routine
" OVFi xedSi zePr operty<PropertyType>: :restoreFroni.

The failure occurred at line 118 in file "../../../ref-
i mpl /src/ OM OVPropertyT. h".

The condition "size == _size" was violated.

You need to

1. run"ComClientTestAAF" to create a new Foo.aaf file

2. copy the newly created Foo.aaf file from AAFWIinSDK/examples/com-api/ComClientTestAAF to
AAFWIinSDK/examples/com-api/ComAAFInfo

3. run "ComAAFInfo" again - this time you shouldn't see the error message

4. repeat 1 - 3 for "CppClientTestAAF" and "CppAAFInfo"

This is currently only a development issue i.e. it occurs during development while the API is still evolving. We
will face a similar issue when we want to release a version 2.0 toolkit after users have created files with a version
1.0 toolkit.

During development | suggest we handle this problem by assigning a new PID to any properties whose type we
change. I'll add code to the OM so that, given a changed PID, the error will always be detected.

9.3 Persistent Objects, Attached Objects And Files

Sometimes in Data Manager code you may want to determine if a particular object is associated with an on disk
file (is persistent) , is attached to (owned by) another object or is contained within a file.

9.3.1 Determining if an Object is Owned by Another Object

An example of the need to determine if an object is owned by another object occurs in

| mpl AAFSequence: : AppendConponent (). This note also applies to the implementation of other append
methods in the Data Manager. Since an object may have only one owner all append functions should check to see
that the object they are being passed is not already owned. The function "bool OMSt or abl e: : att ached() "
is used for this purpose. This function returns t r ue if 't hi s'is an attached object, otherwise it returns f al se.
Here's what the Data Manager code should look like

AAF Object Manager Design Specification Page 63
June 4, 2001 Avid Technology 11

AAFRESULT STDVETHCODCALLTYPE
| mpl AAFSequence: : AppendConponent (I npl AAFConponent * pConponent)

{

i f (pConponent->attached())
return AAFRESULT_OBJECT_ALREADY_ATTACHED;

}

If this check is omitted from the Data Manager code, the actual attempt to attach the object will fail with an
assertion violation. The assertion violation only occurs when assertions are enabled. Assertions are enabled in a
debug build, they are disabled in a release build.

Usually the Data Manager code wants to check that an object is not already attached but sometimes it may require
that an object be attached in this case the code is as follows.

i f (!pConponent->attached())
return AAFRESULT_OBJECT_NOT_ATTACHED;

9.3.2 Determining If An Object Is Contained Within A File

To determine if an object is within a file the Data manager should use code like the following...

if (!pObj->inFile())
return AAFRESULT OBJECT _NOT_I N _FI LE;

9.3.3 Determining if an Object is Persistent

An example of the need to determine if an object is persistent occurs in the implementation of media access. Since
AAF does not support transient media, the media access code should check that the object on which media access is
being attempted is in fact persistent. The function "bool OMSt or abl e: : per si st ent () " is used for this
purpose. This function returns t r ue if 't hi s'is a persistent object, otherwise it returns f al se. Here's an actual
example from the Data Manager code.

AAFRESULT STDVETHODCALLTYPE
| mpl AAFEssenceDat a: : Read (aaf Ul nt32 bytes,
aaf Dat aBuf fer _t buffer,
aaf Ul nt 32 *byt esRead)

/1 Cannot access the data property if it is NOT associated with a file.
if (!persistent())
return AAFRESULT_OBJECT_NOT_PERSI STENT;

}

If this check is omitted from the Data Manager code subsequent calls to the Object Manager to access media on
non-persistent (i.e. transient) objects will fail with an assertion violation. The assertion violation only occurs when
assertions are enabled. Assertions are enabled in a debug build, they are disabled in a release build.

9.3.4 Summary

OMStorable Function Precondition Error Code

attached() None OBJECT _NOT_ATTACHED
inFile() attached() OBJECT NOT IN FILE

AAF Object Manager Design Specification Page 64

June 4, 2001 Avid Technology 11

[persistent() | inFile() | OBJECT NOT PERSI STENT |

The error codes listed are those for which a false result from the OMStorable functions denotes an error. The code
listed omits the AAFRESULT _ prefix.

9.3.5 Notes

1. Foran object to be persistent it is necessarily in a file.
2. For an object to be in a file it is necessarily attached.
3. An object may be attached but not persistent.

4. An object may be attached but not in a file.

10. Performance, Capacity and Scalability Tests

10.1 Object capacity
10.1.1 purpose of test

Determine if there are any built-in capacity limits on the number of objects that can be created, held in memory
and/or stored in a file.

10.1.2 ideal behavior

No limits.
10.1.3 expected behavior

The structured storage limit of approximately 2k open objects.
10.1.4 planned optimization

Keep in memory objects closed, even if they are dirty, open each object before saving it and close it afterwards.
10.1.5 program

Creates a named file and creates a given number of objects and saves them in the file.

10.1.6 input data

None - created on the fly.
10.1.7 graph

None.
10.2 File open latency
10.2.1 purpose of test

Investigate how the time to open a file varies as the number of objects in the file increases.
10.2.2 ideal behavior

The file open time is independent O(1)] of the number of objects in the file.
10.2.3 expected behavior

Ideal.
10.2.4 planned optimization

None.
10.2.5 program

Opens a named file, times the open, then calls close.

10.2.6 input data

Several differently sized files each containing a known number of objects. The files should all have similar
structure.

AAF Object Manager Design Specification Page 65
June 4, 2001 Avid Technology 11

10.2.7 graph

X = number of objects, Y = file open time

10.3 File save latency (create)

10.3.1 purpose of test

Investigate how the time to save a file varies as the number of objects in the file increases.
10.3.2 ideal behavior

The file save time is a linear function [O(n)] of the total number of objects in the file.
10.3.3 expected behavior

Worse than ideal (some function of the total number of properties in the file).
10.3.4 planned optimization

Write whole objects instead of whole properties.

10.3.5 program

Creates a named file containing a given number of objects, saves the file and times the save, then calls close.
10.3.6 input data

None - created on the fly.
10.3.7 graph

a) X =number of objects, Y = file save time, and

b) X =number of propeties, Y = file save time

10.4 File save latency (modify)

10.4.1 purpose of test

Investigate how the time to save a file varies as the number of dirty objects in the file increases.
10.4.2 ideal behavior

The file save time is a linear function [O(n)] of the number of dirty objects in the file.

10.4.3 expected behavior

The file save time is a linear function [O(n)] of the total number of objects, clean and dirty, in the file.
10.4.4 planned optimization

Implement a dirty bit, write only dirty objects.
10.4.5 program
Creates a named file containing a given number of objects, saves the file (not timed). Next dirties a known number

of objects (say 25% of the total) by changing a property, calls save, times the save, then calls close.
10.4.6 input data

None - created on the fly.
10.4.7 graph

a) X =number of objects, Y = file save time and
b) X =number of dirty objects, Y = file save time

10.5 Vector/set scalability
10.5.1 purpose of test

Investigate how the following operations on vectors/sets vary as the number of objects in the vector/set increases.
add a new object to the vector/set
remove a given object from the vector/set
find a given object in the vector/set

AAF Object Manager Design Specification Page 66
June 4, 2001 Avid Technology 11

create large vector/set (many add operations)
10.5.2 ideal behavior

TBS this should be a table with colums for vector and set

add O(lgn)
remove O(lg n)
find O(lg n)

- create large O(n Ig n)
10.5.3 expected behavior

For some operations - O(n) since linear searches are currently employed. Worse [O(n"2)] for "create large" where
growing currently includes copying of elements that are already present.

10.5.4 planned optimization

Mostly balanced binary tree (red-black tree) implementation of vectors/sets giving nearly ideal behavior. TBS can’t
use tree for vectors that aren’t sparse.

10.5.5 program

Create a large vector containing a specified number of object, measure this creation time. Time the add, remove and
find, operations. Repeat for other vector sizes.

10.5.6 input data

None - created on the fly.

10.5.7 graph

a) For op = (add, remove, find) X = number of objects in the vector/set, Y = time to perform op, and
b) X =number of objects, Y = time to create vector/set containing that number of objects.

10.6 Essence access (write)
10.6.1 purpose of test

Determine the rate at which essence data can be written to a file (bytes/second).
10.6.2 ideal behavior

Meets AAF requirement of ? bytes/second.
10.6.3 expected behavior

Too slow, since the implementation of structured storage currently in use doesn't support “unbuffered 1/0".
10.6.4 planned optimization

Possibly use the "4k sector size" implementation of structured storage, however this is not backwardly compatible
with the current implementation of structured storage.

10.6.5 program

Generates plausible, but fake, essence data in memory and writes it to an aaf file measuring the output rate.
10.6.6 input data

None - created on the fly.
10.6.7 graph

None.
10.7 Essence access (write)
10.7.1 purpose of test

Determine the rate at which essence data can be read from a file (bytes/second).
10.7.2 ideal behavior

Meets AAF requirement of ? bytes/second.

AAF Object Manager Design Specification Page 67
June 4, 2001 Avid Technology 11

10.7.3 expected behavior

Too slow, since the implementation of structured storage currently in use doesn't support “unbuffered 1/0".
10.7.4 planned optimization

Possibly use the "4k sector size" implementation of structured storage, however this is not backwardly compatible
with the current implementation of structured storage.

10.7.5 program

Reads essence data from a file and measures the input rate.
10.7.6 input data

Use the file(s) created by the essence access (write) test above.
10.7.7 graph

None.

11. Implementation Order

This section proposes an implementation order for the Object Manager functionality. The goal is to choose an order
that results in the shortest time to create an implementation that can read and write AAF files (not necessarily in
their final format).
1) Stubs only implementation
Call all interfaces but no functionality
Works on all supported platforms
2) File open/create and close
Create a file or open an existing AAF file
Cannot write or read objects
3) Write persistence - simple properties
Create an instance of any registered AAF class and save (simple properties only) it to an AAF file
4) Read persistence - simple properties
Read (simple properties only) an instance of any registered AAF class from a previously created AAF file
Cannot modify the object
5) Read/write persistence - simple properties
Read and write (simple properties only) an instance of any registered AAF class to and from an AAF file
6) Read/write persistence - strong references
Read and write an instance of any registered AAF class (including strong references) to and from an AAF
file
7) Read/write persistence - strong reference vectors
Read and write an instance of any registered AAF class (including strong reference vectors) to and from an
AAF file
8) Read/write persistence - weak references (restricted)
Read and write an instance of any registered AAF class (including restricted weak references) to and from
an AAF file
9) Read/write persistence - media data
Read and write an instance of any registered AAF class (including media data) to and from an AAF file
10) Read/modify/write (write all objects)
Read an object from a file, modify a property, write all objects
11) Read/modify/write (write only changed objects)
Read an object from a file, modify a property, write only the changed object
12) Read/modify/write (write only changed properties)
Read an object from a file, modify a property, write only the changed property
13) Single file persistence
Copy objects
Move objects

AAF Object Manager Design Specification Page 68
June 4, 2001 Avid Technology 11

14) Lazy loading at the object level
Load only those objects that are accessed
15) Lazy loading at the property level
Load only those properties that are accessed
16) Transient objects
Create transient objects (objects not associated with any file and that won't be persisted)
Create a transient object and then insert it into a persistent collection object and have the object persisted
Remove an object from a persistent collection object and have it become non-persistent (transient)
17) More than one file open at a time
Have more than one file open at the same time
Obijects are persisted to and from the proper file
Cannot copy of move objects from one file to another
18) Multi-file persistence - copy/move objects between files
File to file object copy
File to file object move
19) Persistence of objects to which optional properties have been added
Define new properties for an existing class
Write and read instances of that class
20) Persistence of instances of user defined classes - with no user defined behavior
Define a new class
Write and read instances of that class
21) Persistence of instances of user defined classes - with user defined behavior (extended classes)
Define a new class, derived from a predefined AAF class, override a virtual function
Have the user defined virtual function called by the AAF tool kit
22) Reading of instances of user defined classes without the creation code
Write an instance of a user defined class from one application
Read that instance in another application that does not have the object creation code
23) Memory reclamation (lazy unloading)
[TBS]
24) Storage optimizations
[TBS]
25) Garbage collection
[TBS]
26) Weak references (general)
[TBS]
27) Schema evolution
[TBS]

12. Glossary

AAF: Advanced Authoring Format.
AAF Class Dictionary: Same as AAF Dictionary.

AAF Dictionary: A data structure describing all AAF classes and their properties. Both predefined and user defined
classes are described in the AAF Dictionary.

Ancestor: [Definition TBS.]

API: Strictly - Applications Programming Interface, more loosely - Programming Interface.
Class Dictionary: Same as AAF Dictionary.

COM: Component Object Model.

AAF Object Manager Design Specification Page 69
June 4, 2001 Avid Technology 11

Container: Either container file on disk or container object. In this design - container object.
Descendant: [Definition TBS.]
Free store: Dynamically allocated memory, also called the heap.

Isomorphic persistence: An approach to object persistence in which the shape of the graph defined by the objects and
their object references is preserved. In implementation language terms, isomorphic persistence preserves pointer
identity.

IStorage: [Definition TBS.]
IStream: [Definition TBS.]

Object reference: The implementation of an association between objects. An object reference has both an in-memory
and an on-disk form. There are two kinds of object reference, strong and weak.

Object store: The place to which persistent objects are saved. A disk file. In the context of this document the term
object store is synonymous with AAF file.

Persistent object: Persistent objects are objects that are associated with an object store. The state of a persistent
object is saved across application invocations. Also known as linked objects.

Persistent store: Same as object store.

Primitive Type: For the purposes of this specification, any type not descended directly or indirectly from
AAFObject. Primitive types are the building blocks used to create other types.

Property: [Definition TBS.]

Recursive persistence: An approach to object persistence in which all of the objects associated with a given object
store may be found by starting at a root object and recursively following all references, both strong and weak.

Semantically valid: [Definition TBS.]

Stable times: Those times at which an object may be observed by other objects. The term "stable times™ means
between, and not during updates. As an example, in a doubly linked list, the condition (next->previous == this),
which is one of the invariants that defines a doubly linked list, holds only at stable times. The condition does not
hold during the removal of an element.

Strong object reference: An object reference that implements the “contains” association. Strong object references
connote ownership. Since an object may have only one owner there may be, at most, only one strong reference to a
given object. Compare with weak object reference.

Structurally valid: [Definition TBS.]
TBS: To Be Supplied, To Be Specified.

Transient object: Transient objects are objects that are not associated with an object store. The state of a transient
object is not saved across application invocations. Also known as unlinked objects.

Weak object reference: An object reference that implements an association between objects. Weak object references
do not connote ownership. There may be zero or more weak reference to a given object. Compare with strong object
reference.

13. References

13.1 General References
AAF Web site - http://www.AAFAssociation.org/
OMF Web site - http://www.omfi.org

13.2 COM and Structured Storage
“Inside Distributed COM”, Guy Eddon, Henry Eddon, 1998 Microsoft Press, ISBN1-57231-849-X
See pages 277-286 for an overview of structured storage. See also chapter 7 — “monikers and structured storage”.

AAF Object Manager Design Specification Page 70
June 4, 2001 Avid Technology 11

http://www.aafassociation.org
http://www.omfi.org

“Inside OLE, 2nd Ed.”, Kraig Brockschmidt, 1995, Microsoft Press, ISBN 1-55615-843-2
See pages 35-38 for a very high level overview of structured storage. See the whole of chapter 7 for a detailed look
at structured storage.

“Understanding ActiveX and OLE”, David Chappell, 1996, Microsoft Press, ISBN 1-57231-216-5
See chapter 5 “Persistence”.

“Essential COM”, Don Box, 1998, Addison Wesley, ISBN 0-201-63446-5
See Chapter 2 “Interfaces” and in particular the section entitled “Resource Management and 1Unknown” for a clear
description of the COM reference counting rules.

13.3 Object Oriented Software Engineering
“Object Oriented Software Construction, 2" Ed.”, Bertrand Meyer, 1997, Prentice Hall, ISBN 0-13-629155-4
See chapter 31 “Object Persistence and Databases”.

13.4 Object Databases

“The Object Database Standard: ODMG 2.0”, R. G. G. Cattell and Douglas K. Barry (eds), 1997, Morgan
Kaufmann, ISBN 1-55860-463-4

13.5 Design Patterns

“Design Patterns : Elements of Reusable Object Oriented Software”, Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, 1994, Addison Wesley, ISBN 0-201-63361-2

13.6 Program Portability, Data Representation And Data Exchange

- “C - A Reference Manual”, Samuel P. Harbison and Guy L. Steele Jr., 1991, Prentice Hall, ISBN 0-13-
110933-2

See chapter 6 “Conversions and Representations”. In particular see section 6.1.2 “Byte Ordering” and section 6.1.3

“Alignment Restrictions”. See also chapter 5 “Types”.

“A Retargetable C Compiler : Design and Implementation”, Christopher Fraser and David Hanson, 1995,
Benjamin/Cummings, ISBN 0-8053-1670-1
See chapter 11 “Declarations”. In particular see section 11.5 “Structure Specifiers”.

“See MIPS Run”, Dominic Sweetman, 1999) Morgan Kaufmann, ISBN 1558604103
13.7 Data Structures

"Introduction to Algorithms", Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, 1997 MIT Press
(McGraw-Hill). ISBN 0-262-03141-8
See chapter 14, page 263 for an excellent presentation of Red Black Trees.

"The Modula-2 Software Component Library, Volume 3", Charles Lins, 1989 Springer-Verlag, ISBN 0-387-
97074-6

"Algorithms + Data Structures = Programs", Niklaus Wirth, 1976, Prentice Hall, ISBN 0-13-022418-9
"Algorithms and Data Structures”, NIklaus Wirth, 1986 Prentice Hall, ISBN 0-13-022005-1

"The Design and Analysis of Computer Algorithms"”, Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,
1974 Addison Wesley, ISBN 0-201000029-6

AAF Object Manager Design Specification Page 71
June 4, 2001 Avid Technology 11

Related Documents

Document Name Location Owner Description
Proposed SMPTE Recommended Practice for Josh Goldman A proposed SMPTE standard. Describes the
Television — Interchange of Video and Audio stored representation of the AAF object model.
Material and Related Descriptive Information as This description is more up-to-date than the
Edit Decision Data “AAF Object Specification”.
AAF Object Specification AAF Web site | Josh Goldman Describes the stored representation of the AAF
object model.
Microsoft Advanced Authoring File Format Microsoft
Requirements Document
Microsoft ~ Multimedia Task Force AAF Microsoft
Requirements Addendum 1
AAF Object Management Oliver Morgan
AAF Toolkit Architecture Bob Tillman
AAF Plug In Issues Oliver Morgan
OMPFI/Structured Storage Analysis Microsoft
OMF Interchange Specification Version 2.1 Josh Goldman
AAF Object Manager Design Specification Page 72

June 4, 2001 Avid Technology 11

14. Revision History

Name Date Version | Description

Tim Bingham | 5/26/98 0 Outline only

Tim Bingham 5/28/98 0.1 Start adding content (not published)

Tim Bingham 5/29/98 0.2 Add more content (not published)

Tim Bingham 6/1/98 0.3 Get ready for preliminary review (not published)

Tim Bingham 6/2/98 0.4 Preliminary review version (depth charge)

Tim Bingham 6/23/98 0.5 Incorporate review comments

Tim Bingham 7/13/98 0.6 Incorporate more review comments (not published)

Tim Bingham 7/27/98 0.7 Provide details of OM interfaces, more merging.

Tim Bingham 0.8 Add more detail on design of OM interfaces

Tim Bingham 3/10/99 0.9 Add and expand cookbook. Add more detail on property types. Add information on storage
overhead. Add more detail to “Class Interfaces” section. Add more detail, including data
structures, on mapping of AAF objects to structured storage. Add more references. Update and
expand the summary of requirements. Add information on mapping between SMPTE unique
identifiers and AUIDs. Record the resolution of all open issues.

Tim Bingham 3/10/99 1.0 Update and expand the summary of requirements. Remove review comments section, which was
previously included for historical reasons. Add section on AAF API file save semantics. Remove
section on possible implementations of AAFDictionary::createlnstance(). Update some of the code
fragments. Add a reiteration of the rules for file byte order. Add missing requirements on byte
ordering, “foreign objects”, embedding and Object Manager interfaces. Update section on
semantics of AAFFile::Save(). Many small changes to improve consistency. More cookbook
improvements. Remove “dependencies on other AAF components” section since this material is
now all covered elsewhere in the document. General editorial clean up pass.

Tim Bingham 7/9/99 11 Move “Object Creation” to “Class Interfaces” section. Add description of OMType to “class
interfaces” section. Add information on COM reference counting to the design section. Added
“Reference Counting Cookbook” to “Developer Notes” section. Add section on the design of
optional property support. Expand references section. Add description of the “assertion violation
backstop” design. Use “type” for “data type” (of a property value) and “stored form” for the type
of on-disk representation used for the property value.

Tim Bingham 8/24/99 1.2 Added new section “Creating Objects and Meta Data Objects”.

Tim Bingham 9/22/99 13 Add new section on “Indirect, private, encrypted, opaque and KLV types”. Fill out section on
“Shared Access to AAF Files”. Added new section on “AAF File SMPTE Signature”. Added new
section on “File Mode Flags”. Add section on “Performance, Capacity and Scalability Tests”.

Tim Bingham 11/3/99 14 Add design information on strong reference sets and on weak references.

Tim Bingham | 4/5/00 15 Update description of stored property set and collection (strong and weak reference vectors and
sets) indexes.

Tim Bingham 6/4/01 1.6 Prepare for release to Open Source.

AAF Object Manager Design Specification

June 4, 2001

Page 73
Avid Technology 11

	Introduction
	Design Overview
	Summary of Requirements
	Overview of Structured Storage
	Design Principles
	Class Interfaces
	Defining and Accessing Properties
	Saving and Restoring Property Values
	Persistent Property Class Hierarchy
	Creating Object Instances
	Type-specific Byte reordering, Internalization and Externalization

	Property Types
	Structural types
	Primitive Types
	Compositional Types
	Composed Types
	Summary of Property Types
	How Types are composed
	Mapping of Types to Structured Storage
	Indirect, private, encrypted, opaque and KLV types
	Name Equivalence

	Object Manager Design
	Object Manager Interfaces
	File Level Operations
	Persistence Infrastructure
	Optional Properties
	Mapping AAF Objects to Structured Storage
	Object Naming
	Lazy Loading and Memory Reclamation
	Transient Objects
	COM Reference Counting
	Object Directory
	Shared Access to AAF Files
	Assertions

	Notes for Developers of Object Manager Client Code
	Cookbook for making Properties Persistent
	Changing Property Types
	Persistent Objects, Attached Objects and Files

	Performance, capacity and Scalability Tests
	Object Capacity
	File Open Latency
	File Save Latency (create)
	File save latency (modify)
	Vector/set scalability
	Essence Access (write)

	Implementation Order
	Glossary
	References

