Object Manager Stored Format
Avid Technology Inc.

Revision 0.4

Author: Tim Bingham

August 14, 2001

1.

Contents

Mapping Of ODJECES t0 STIUCLUIEA SEOTAGEveueeuieueeieiie ettt bbb bbb et e e ne e 4
LL1 OVEIVIBW ..ottt bR E R b5 £ R R E A E R b6 E R bR £ bbb b e et bbbt e bt nanen s 4
1.2 DIALA STIUCTUIES ...ttt e e R R R Rt et e et n et n e r e nr e n s 6

O O R 11 =T = LI I/ o -1 6
O I T 1 - R 5/ 01 OSSR 6
1.2.0.3 PrOPEILY INUBX ..oeeiiiiteiite ettt bbbkttt b ekt b bbbt b et b e et e et ne et e nnebe e 6
L.2.1.3.1 PUIPOSE ..otttk bbb e sttt b bRt Rt Rt R er e n b e ene s 6
1.2.1.3.2 EXErnal rePreSENtAtIONceivieiieiirieiiite sttt bbbt 6
1.2.1.3.3 Structure of Property INdeX HEAUENccoouiiiiiiiiiesee e 6
1.2.1.3.4 Structure of a Property INAeX ENTrY........ooiiie e 6
1.2.1.4 Strong ODJECE REFEIENCE.c.eiuiiei ittt b ettt b e bbb et e b e e e e ene e e aneaneas 7
L2140 PUIPOSE ..ttt ettt ettt etttk et s bt et e s b e bt e b e e b £ e h s £ R e e ae e eR e e et ehe e R e e b e e nEe e R b e nb e e R b e nbeenbeeneenneeneenas 7
1.2.1.4.2 EXtErnal REPIESENTALION.c.ciiiiiiitiiteite sttt b ettt b st b e sb bbb e 7
1.2.1.5 Strong ObJect REFEIEBNCE VECION......ciiiiiiiie ettt ettt st s be bbb et e b e e eneereeseeneanens 7
O R T0t N U o0 L O PP PP OPPRPRPPPN 7
1.2.1.5.2 EXternal REPIESENTALION.cviviiiiiiiterestee ettt e sttt e et et e e e eneeseeseanearenreseesrenes 7
1.2.1.5.3 Structure of a Strong Object Reference Vector IndeX HEadercccvevvivivvierivveninneseneereseenens 7
1.2.1.5.4 Structure of a Strong Object Reference Vector INdeX ENtry ..o 8
1.2.1.6 Strong ODJECt RETEIENCE SELS......iiicirieiiieiiee ettt bbbt bbb et e b e 8
L.2.1.8. 1 PUIPOSE ...tttk h b b e h et s et b bRt R Rt R R n b e ene s 8
1.2.1.6.2 EXternal REPIESENTALION.ciiveiirieiirieti ittt ettt sttt 8
1.2.1.6.3 Structure of a Strong Object Reference Set Index HEAercooieiiiiiiiiieeee e 8
1.2.1.6.4 Structure of a Strong Object Reference Set INdeX ENtry ..o 8
1.2.1.7 WeaK ODJECE RETEIEINCEc.eiuiieieeiiiie ettt bbb bbb bbb e e e e e e e neene s 9
L.2.1.7.0 PUIPOSE ..ttt ettt b et h et b btk e bt e b e R e e a s e R e e R b e e b e e e e e b e e R e e b e e e Rt e b e e R e e R b e bt e nrenn e enneeneenas 9
1.2.1.7.2 EXtErNal rePreSENTAtIONcoviiviiteiieecieiee et ettt sa et aeseetaetestesbesbesteseesbeseesrenseseeseeneaneas 9
1.2.1.7.3 Structure of a Weak Object REFEIENCEcvcviiiiciie e eneas 9
1.2.1.8 Weak Object REFEIENCE VECIONcviiieiiecesiesie sttt ettt sttt st e e sae e eneeneeseeneanens 9
O 0 00 O 0 oo £ PR 9
1.2.1.8.2 EXIErnal rePreSENtAtIONc.ciivieiietiiteiiriei ettt bbbt bbbt 9
1.2.1.8.3 Structure of a Weak Reference Vector Index Headercoevviieiinninseseee e 9
1.2.1.8.4 Structure of a Weak Object Reference Vector INdeX ENtry ..o 9
1.2.1.9 Weak ODJECt REFEIENCE SEL......c..ciiieiiiiciiieeeee e ettt 10
L.2.1.9.1 PUIPOSE ...ttt ettt ettt ettt e ekt b ekt b e e b e b e s e e b £ eh b e eb £ £ R b e eh £ £ a b e ehe ekt e Re e b e e Re e eReeReenbeeneenbeente e 10
1.2.1.9.2 EXternal RePreSENTALION.ciuiiiiiiiite ettt sttt b et bt eebesbesbeene 10
1.2.1.9.3 Structure of a Weak Object Reference Set Index Header ... 10
1.2.1.9.4 Structure of a Weak Object Reference Set INdeX ENtryccocveieiieiiiicne e 10
1.2.1.10 Data Stream (IMedia DAta)........ccceieiueiieiieieiiieeisie et ste et a e ta e besbesre b sr e be e e e et eneens 10
O 00T U4 o - ST 10
1.2.1.10.2 EXternal REPIESENTALION.ccivieiiiiiesies ettt sttt sa et e e sa e e ese e e s e enesresrennens 10
1.2.1.10.3 Structure 0f @ Data SIFEAMcovovireiirireirs e 10
12111 The Referenced-Properties TabIe ... 10
1.21.12 The Referenced-Properties Table HEAUENcco it 11
1.3 Storage and Sream NAIMINGccoii ittt bbb b et b et b st bttt et 11
O S (o] =T 0] 4SO 11
1.4.1 AASSTONMEBNTS ...ttt ettt ettt ettt ettt et e et et e b e bt sb e b e eheeb e eese e e e s s e e emeeseeb e e ReeReeb e e bt ebeebeaeeseebeee e eneaneas 11
LLA LD INOEES ettt etttk b bbbt £ bk £ £ b b E bk £ £ b bR £ e R b bR £ b b e Rt b b bRt b bbbt e 11
1.4.2 CUrrently DefiNed VAIUES..........ooiiiieiie ettt b ettt b e bt e 11
L4210 KBY ittt E bR £ R bR bRt b bRt E bbb bbbt 12
LL4.2.2 NOUES ..ottt e 12
1.4.3 Representations BY STOred FOMMcvcviiiicece et sttt sn e neens 12

w N

IO J O o - Tod 1 20 S 12

151 PropertyIndexHeader and PropertyINAeXENIYcooiiiiriiiieieses e 13
15.2 OBNEE FIEIAS ...t b et b e bbbt bttt 13
1.6 FIIE SHONAIUIESeceieeiitee ettt bbbt bbb bbbtk bbb bbbt bt bttt 14
1.7 PID ASSIGINIMENT. ...ttt ittt ettt bbb h bbb bbb bbbt bbbttt bt bbb 14
1.7.1 BACKGIOUNG. ...t b bbbt b bbbttt bt 14
1.7.2 (O 1 To o] g T o] il o 1 OO TSR 14
1.7.3 RUIES TOr PID @SSTGNMIBNTttt et s et b e b e b e b e b e b sb e b et e see e e e enes 14
MapPING OF OBJECES 10 XIMIL ...ttt ettt b bbbt e b e bt b et e b en e b e b e e eneeneas 15
Y T o oL To o) O o] =Tt N (o TN G A S RRSRSRSRS 16
[ToTo1W [41 gl 1) (o] USSR 17

1. Mapping of Objects to Structured Storage

1.1 Overview

1

2)

3)

4)

5)

Each object is represented by a corresponding IStorage. The stored id of the object is stored as the CLSID of the

IStorage object and is part of the structured storage overhead.

Each IStorage contains an IStream called "properties”. The “properties” IStream is consists of two parts, the first

portion contains the index of properties for the object and the second portion contains the “flat” or “simple”

property values for the object. “Flat” and “simple” here means values that are not objects, that are not object
collections and that are not streams. Note, however, that objects, object collections and streams do contribute to the

“properties” 1Stream. The index and values are in the same 1Stream, rather than in separate 1Streams, to reduce the

Structured Storage overhead.

a) The property index portion contains a header followed by a counted array of structures.

i) The header has the format.
(1) Byte order
(2) Count of properties. The number of array elements that follow.
ii) The counted array has the format with the following fields
(1) Property Id - identifies the property
(2) Property stored form - the structural “type” of the property. This indicates the meaning of the “flat”
value in the “properties” stream.
(3) Size — the size of the “flat” value of this property in the “properies” IStream.

b) The property value portion contains the “flat values” of the properties for this object.

A single contained object is stored in a sub-1Storage. The name of the IStorage is given by the “flat” value in the

“properties” I1Stream corresponding to the contained object’s entry in the "properties” 1Stream.

A contained vector of objects is represented as follows

a) Each vector is described by an index stored in an IStream. The name of the vector index IStream is given by
the “flat” value in the “properties” IStream corresponding to the contained object vector’s entry in the
"properties"” IStream.

b) The contents of the vector index IStream are
i) Count of objects
ii) First free insertion key
iii) Last free insertion key
iv) Array of insertion key values, one for each contained object, the first key in the array is the key of the first

object in the contained vector and so on.

¢) Each sub-object in the contained vector is stored in an IStorage whose name is formed from the name of the
vector and the insertion key of the contained object.

A contained sets of objects is represented as follows.

a) Each set is described by an index stored in an 1Stream. The name of the set index IStream is given by the
“flat” value in the “properties” IStream corresponding to the contained object set’s entry in the "properties™
IStream.

b) The contents of the set index IStream are
i) Count of objects
ii) First free insertion key
iii) Last free insertion key
iv) Key property id — the id of the property used to uniquely identify each object in the set. The value of this

property is the object’s search key
V) Key size — the size of the search key

6)

7)

8)

9)

vi) Array of triples, one for each contained object
(1) Insertion key
(2) Count of weak references
(3) Key value — the search key
Weak references are represented as follows
a) Tag - identifies the path from the root object to the property instance containing the object that is the target of
this weak reference
b) Key property id
c) Keysize
d) Key value
Vectors and sets of weak references are represented as follows.
a) Count of referenced objects
b) Tag - identifies the path from the root object to the property instance containing the object that is the target of
this weak reference
¢) Key property id
d) Keysize
e) Array of key values one for each referenced object
Media data is stored in a sub-I1Stream. The name of the IStream is given by the “flat” value in the “properties”
IStream corresponding to the Media data stream’s entry in the "properties” 1Stream
There is one per-file data structure used for resolving weak references. This data structure is stored in an I1Stream
called “referenced properties” in the root IStorage. This stream consists of
a) Byte order
b) Count of entries
c) A sequence of null terminated lists of property ids. The first list is referenced using tag 0 and so on. Each list
is a path from the root object to a particular property instance.

1.2 Data Structures

This section describes the data structures used to map objects on to structure storage. Note that the t ypdef s shown
here are not real type definitions from any implementation, they are provided for illustrative purposes only.

1.2.1.1 Integral Types

These types, assumed to be defined appropriately for a particular host, are used in subsequent declarations.

typedef ... oWl nt 8;
typedef ... OWVUI nt 16;
typedef ... OVl nt 32;

1.2.1.2 Data Types
These types are used to define members of data structures.

typedef OMJInt8 QOwByteOr der;
typedef OMJInt8 QOWersion;
typedef OMJI nt 16 OWPropertyCount;
typedef OMJI nt 16 OWPropertyld;
typedef OMUJI nt 16 QOVSt or edForm
typedef OMUJI nt 16 OVPropertySi ze;
typedef OMJInt8 QOWKeySi ze;
typedef OMJI nt 16 OWPropertyTag;
typedef OMJ nt 16 OMChar act er;

1.2.1.3 Property Index

1.2.1.3.1 Purpose

The property index is an index into the property values. Both the index and the values (“flat” values only) are stored in
a stream named “properties”.

1.2.1.3.2 External representation

An IStream called “properties” containing a Pr oper t yl ndexHeader followed by _ent r yCount
Pr opertyl ndexEnt ry structs.

1.2.1.3.3 Structure of Property Index Header
A Propertyl ndexHeader is defined as follows...

typedef struct Propertyl ndexHeader ({

OwvByt eOr der _byteOrder; /1 1 byte
Ower si on _formatVersion; // 1 byte
OWPr opertyCount _entryCount; /1l 2 bytes

} Propertyl ndexHeader ;

The _byteOrder isthe byte order of
the remaining fields of the Pr oper t yl ndexHeader struct
the Propertyl ndexEntry structs that follow
the actual property data
The _f or mat Ver si on is version number of the stored format, this allows for otherwise incompatible changes to the
stored format.
The _ent r yCount is the number of Pr opert yl ndexEnt ry structs that follow.

1.2.1.3.4 Structure of a Property Index Entry

typedef struct PropertylndexEntry {

OWPropertyld _pid; /'l 2 bytes
OVst oredForm st oredForm /1l 2 bytes
OWPropertySi ze _| ength; /1l 2 bytes

} Propertyl ndexEntry;

The _pid isthe id that describes the property. This is a shorthand version of the GUID that uniquely identifies the
property. Property ids are locally unique. For all predefined properties the property id is the same in all files. For user
defined extension properties the assigned property id may vary across files.

The _st or edFor midentifies the “type” of representation chosen for this property. This field describes how the “flat”
property value should be interpreted. Note that the stored form described here is not the data type of the property
value, rather it is the type of external representation employed. The data type of a given property value is implied by
the property ID. The actual data type of a property value may be determined by looking up the associated property id in
the dictionary.

The _I engt h is the length, in bytes, of the property value in the property value stream.

1.2.1.4 Strong Object Reference

1.2.1.4.1 Purpose
A single contained object.

1.2.1.4.2 External Representation

Stored form SF_STRONG_OBJECT REFERENCE

Property value Name of object

1.2.1.5 Strong Object Reference Vector

1.2.1.5.1 Purpose
An ordered collection of strongly referenced (contained) objects.

1.2.1.5.2 External Representation

Stored form SF_STRONG_OBJECT _REFERENCE_VECTOR
Property value Name of vector

Set index name <name of vector> index

Set element name <name of vector>{<local key of element>}

Each vector index consists of a St r ongRef er enceVect or | ndexHeader followed by _ent r yCount
St r ongRef er enceVect or | ndexEnt ry structs.

1.2.1.5.3 Structure of a Strong Object Reference Vector Index Header
A StrongRef er enceVect or | ndexHeader is defined as follows...

typedef struct StrongReferenceVectorl ndexHeader {

OWMUJI nt 32 _ent ryCount; /'l 4 bytes
OWMUI nt 32 _firstFreeKey; /'l 4 bytes
OMUI nt 32 _| ast Fr eeKey; /1l 4 bytes

} StrongRef erenceVect or | ndexHeader ;

The _ent ryCount is the number of Vect or | ndexEnt ry structs that follow.

The _first FreeKey is the next local key that will be assigned in this vector.

The _| ast Fr eeKey is the highest unassigned key above fi r st Fr eeKey. The keys between fir st Fr eeKey
and _| ast Fr eeKey are unassigned, while there may be other gaps in key assignement this represents the largest one.

1.2.1.5.4 Structure of a Strong Object Reference Vector Index Entry

typedef struct StrongReferenceVectorl|ndexEntry {
OWVUI nt 32 _| ocal Key; /1l 4 bytes
} StrongRef erenceVectorl ndexEntry;

The _| ocal Key uniquely identifies this strong reference within this collection independently of its position within
this collection. The _| ocal Key is used to form the name assigned to the element in this vector at the corresponding
ordinal position. That is, the _| ocal Key of the first St r ongRef er enceVect or | ndexEnt ry is used to form the
name of the first element in the vector and so on. The _| ocal Key is an insertion key.

1.2.1.6 Strong Object Reference Sets

1.2.1.6.1 Purpose

An unordered collection of strongly referenced (contained) uniquely identified objects, each of which can be
efficiently located by key - O(lg N)
the target of a weak reference

1.2.1.6.2 External Representation

Search key Obtained from "object->identifier()"

Stored form SF_STRONG_OBJECT_REFERENCE_SET
Property value Name of set

Set index name <name of set> index

Set element name <name of set>{<local key of element>}

Each set index consists of a St r ongRef er enceSet | ndexHeader followed by _ent r yCount
St ronRef er enceSet | ndexEnt ry structs.

1.2.1.6.3 Structure of a Strong Object Reference Set Index Header
typedef struct StrongReferenceSet| ndexHeader {

OWUI nt 32 _entryCount; /1l 4 bytes
OWUI nt 32 _firstFreeKey; /'l 4 bytes
OWUI nt 32 _| ast Fr eeKey; /'l 4 bytes
OWPropertyld _identificationPid; // 2 bytes
OWKeySi ze _identificationSize; // 1 byte

} StrongRef erenceSet | ndexHeader ;

The _i dentification field of St r onRef er enceSet | ndexEnt ry is the value of the property on the
contained objects with property id _i dentifi cati onPid. Each_identification inthe
St r ongRef er enceSet | ndexEnt ry structs that follows is _i denti fi cati onSi ze bytes in size.

1.2.1.6.4 Structure of a Strong Object Reference Set Index Entry
typedef struct StrongReferenceSetl|ndexEntry {

OWUI nt 32 _l ocal Key; /'l 4 bytes
OVUI nt 32 _referenceCount; /'l 4 bytes
<variable> _identification; /'l N bytes

} StrongRef erenceSet| ndexEntry;

The _ref erenceCount isthe count of weak references to this object. The type of the i denti fi cati on field
varies from one instance of a StrongReferenceSet to another. The value of the i denti fi cati on field uniquely
identifies this object within the set. It is the search key.

StrongReferenceSetindexEntry structs appear in the index in order of increasing key. If an application consuming the
set index wishes to construct a binary search tree, care must be taken not to invoke the worst case performance by
inserting the keys in order. One way to avoid this problem is to insert the keys in “binary search” order. That is the

middle key is inserted first then (recursively) all the keys below the middle key followed by (recursively) all the keys
above the middle key.

1.2.1.7 Weak Object Reference

1.2.1.7.1 Purpose

A weak object reference is a persistent data type that denotes a weak reference to a uniquely identified object. In
memory, weak references are similar to pointers. When persisted, weak references contain the unique identifier of the
referenced object.

1.2.1.7.2 External representation

Stored form [SE WEAK_OBJECT REFERENCE

1.2.1.7.3 Structure of a Weak Object Reference

typedef struct WeakObj ect Ref erence {
OWPropertyTag _referencedPropertylndex; [// 2 bytes

OWPropertyld _identificationPid; /1l 2 bytes
OWKeySi ze _identificationSize; /1 1 byte
<vari abl e> _identification; /1 N bytes

} WeakObj ect Ref erence;

The _ref erencedPropertyl ndex is the index into the referenced property table of the path to the property (a
strong reference set) containing the referenced object. The type of the _i denti fi cati on field varies from one
instance of a Weak Obj ect Ref er ence to another. The _i denti fi cati on field uniquely identifies the object
within the target set.

1.2.1.8 Weak Object Reference Vector

1.2.1.8.1 Purpose
An ordered collection of weak references.

1.2.1.8.2 External representation

Stored Form SF WEAK OBJECT REFERENCE VECTOR
Property value Name of vector
Vector index name <name of vector> index

1.2.1.8.3 Structure of a Weak Reference Vector Index Header

typedef struct WeakRef erenceVect orl ndexHeader {

OMUI nt 32 _entryCount; /[l 4 bytes
OWPropertyTag _referencedPropertylndex; // 2 bytes
OWPropertyld _identificationPid; /1l 2 bytes
OWKeySi ze _identificationSize; /1 1 byte

} WeakRef er enceVect or | ndexHeader ;

1.2.1.8.4 Structure of a Weak Object Reference Vector Index Entry

typedef struct WeakReferenceVectorl ndexEntry {
<variabl e> _identification; /'l N bytes
} WeakRef erenceVect or | ndexEntry;

1.2.1.9 Weak Object Reference Set

1.2.1.9.1 Purpose

An unordered collection of weakly referenced (not contained) uniquely identified objects, each of which can be
efficiently located by key - O(lg N)

1.2.1.9.2 External Representation

Search key Obtained from "object->identifier()"
Stored form SF WEAK OBJECT REFERENCE SET
Property value Name of set

Set index hame <name of set> index

1.2.1.9.3 Structure of a Weak Object Reference Set Index Header

typedef struct WeakRef erenceSet | ndexHeader {
... same as WakRef erenceVect or | ndexHeader
} WeakRef erenceSet | ndexHeader ;

1.2.1.9.4 Structure of a Weak Object Reference Set Index Entry

typedef struct WeakReferenceSet| ndexEntry {
... same as WeakRef erenceVector|ndexEntry ...
} WeakRef erenceSet | ndexEntry;

1.2.1.10 Data Stream (Media Data)

1.2.1.10.1 Purpose
Storing embedded media. Also used to store other large variably sized information such as timecode.

1.2.1.10.2 External Representation

Stored form SF_ DATA _STREAM

Property value Name of stream

1.2.1.10.3 Structure of a Data Stream

typedef struct DataStream {
OwvByt eOr der _byteOrder; // 1 byte
OMChar acter[<vari abl e>] _streanName; // N bytes
} DataStream

The _st r eamNane is expressed as a null terminated string of 2-byte UNICODE characters. The size of the

st r eamNane is given by 2 * (number of characters + 1). The maximum size is 32 bytes, this is a Structured Storage

constraint. Note that the _byt eOr der is the byte order of the data in the stream. The byte order of the
_streamNane is given by the byt eOr der field of the Pr oper t yl ndexHeader .

1.2.1.11 The Referenced-Properties Table

A weak object reference references an object in a particular strong reference set property instance. Property instances
are represented by a null terminated list of property ids. The list is the path from the root object to the property instance.

In order to avoid storing the path to the referenced property in each weak reference the path is stored once, in the

referenced-properties table, and the index of the path in the table is stored in the weak reference. This index is also

called a tag.

10

There is one referenced-properties table in each AAF file. The referenced-properties table is a stream called
“/ref erenced properties”. The stream consists of a header followed by a sequence of null terminated property
id lists similar to a string space.

1.2.1.12 The Referenced-Properties Table Header
typedef struct ReferencedPropertiesTabl eHeader {

OwByt eOr der _byteCOrder; /1 1 byte
OWPr opert yCount _pat hCount ; /'l 2 bytes
OWUI nt 32 _pi dCount ; /1l 4 bytes

} ReferencedPropertiesTabl eHeader;

The _pat hCount field holds the number of referenced-properties in the table. Each reference property is stored as a
property path — a null-terminated list of property ids. The _pi dCount field is the total number of property ids that
follow, including null terminators. The first property path in the list has a referenced property index (tag) of 0 and so
on.

1.3 Storage and Stream Naming
[TBS]

1.4 Stored Forms

This section describes the stored form bit assignments.

1.4.1 Assignments

bit(s) Value

15..8 Not used, must be 0

7.6 00 = object reference
01 = stream

10 = fixed size data

11 = variable size data

5 0 = weak
1 = strong
4 0 = singleton
1 = collection
3 0 = vector
1 =set
2 0 = not a unique object identification (set or search key)
1 = a unique object identification (set or search key)
1 0 = opaque (not understood or interpreted by the Object Manager)
1 = transparent (understood and interpreted by the Object Manager)
0 0 = not a stored object identification ("CLSID")

1 = a stored object identification ("CLSID")

1.4.1.1 Notes

1) Notall combinations are valid
a) bit5is only examined if bits 7..6 == 00
b) bit 3 is only examined if bit 4 ==
2) Not all valid combinations are currently used/implemented

1.4.2 Currently Defined Values

11

Stored form name

Value Value

C
w
@
o

SF DATA

10.X.x.X.X.1.0 82

SF_DATA _STREAM

01.x.X.x.x.1.0 42

SF_STRONG_OBJECT_REFERENCE

00.1.0.x.x.1.0 22

SF_STRONG_OBJECT_REFERENCE_VECTOR

00.1.1.0.x.1.0 32

SF_STRONG_OBJECT_REFERENCE_SET

00.1.1.1.x.1.0 3A

SF_WEAK_OBJECT_REFERENCE

00.0.0.x.x.1.0 02

SF_WEAK_OBJECT_REFERENCE_VECTOR

00.0.1.0.x.1.0 12

SF_ WEAK_OBJECT REFERENCE_SET

00.0.1.1.x.1.0 1A

SF. WEAK_OBJECT REFERENCE STORED OBJECT ID | 00.0.0.x.x.1.1 03 [1]
SF_UNIQUE OBJECT ID 10.X.X.X.1.1.0 86 [2]
SF_ OPAQUE STREAM 0L.X.X.X.X.0.0 40 [3]

SIoIoaKkK K K KK I

1421 Key

X = no meaning, must be zero
y = currently used in the reference implementation
n = not currently used in the reference implementation

1.4.2.2 Notes

[1] = Would allow the stored object id (stored in the CLSID field of the IStorage) to be treated as a weak reference.

[2] = Would allows unique identifiers to be stored only in the set index instead of both in the set index and a property

value.

[3] = Would allow maintaining a rule that all storage elements in a file are part of an OMStorable while allowing
"extra" storage elements such as the "Summarylnformation™ stream.

Even though only 1 byte is needed, OMStoredForm is 2 bytes in size in order to keep each property index entry an even

number of bytes in size.

Consumers must ignore index entries that they don't understand. For unknown values of _storedForm, _length is
guaranteed to be valid, the bytes cannot be interpreted correctly, however they can be skipped.

1.4.3 Representations by Stored Form

Stored form name

“flat” value

“deep” value

SF DATA

Data

None

SF_DATA_STREAM

Byte order, Stream name

IStream containing data

SF_STRONG_OBJECT_REFERENCE

Object name

IStorage containing object

SF_STRONG_OBJECT_REFERENCE_VECTOR

Vector name

IStream containing index,
one IStorage per object

SF_STRONG_OBJECT_REFERENCE_SET

Set name

IStream containing index,
one IStorage per object

SF_WEAK_OBJECT_REFERENCE

Tag, Key pid, Key size, Key

None

SF_WEAK_OBJECT_REFERENCE_VECTOR

Vector name

IStream containing index

SF WEAK OBJECT REFERENCE SET Set name IStream containing index
SF WEAK OBJECT REFERENCE STORED OBJECT ID | NYI NYI
SF UNIQUE OBJECT ID NYI NYI
SF OPAQUE STREAM NYI NYI

1.5 Capacity Limits

12

1.5.1 PropertylndexHeader and PropertylndexEntry

There is one PropertylndexHeader per object instance. There is one PropertylndexEntry per property instance.

PropertyIlndexHeader | Field Name Field Size | Capacity
_byteOrder 1 'L’ (little endian) or 'B' (big endian)
_formatVersion 1 256 different revisions to the file format
_entryCount 2 64Kk properties per object instance

Total 4

PropertyIndexEntry Field Name Field Size | Capacity
_pid 2 64k different property definitions per file
_storedForm 2 64k different ways to store a property value
_length 2 64Kk bytes of data per simple property

Total 6

The capacity limits above apply only to simple property data. They do not apply to

1. streamed data such as media data (essence) and time code.
2. referenced or contained objects (singleton, vector or set)

The design allows 64k properties per object each property may be up to 64k bytes in size. That's a theoretical limit of
4096 M per object.

The design omits an _offset field from the PropertylndexEntry and requires property values to be contiguous within the

“properties” stream. This restriction could be relaxed later by assigning a _storedForm bit value to mean "unallocated
and available for use".

1.5.2 Other fields

Field Field Size | Capacity

_entryCount 4 Maximum of approximately 4 Gazillion elements in any
strong/weak reference set/vector. This seems too much but it is a
theoretical limit. Note that our design goal of 100,000 Mobs
means that 2 bytes would be too small here. This field occurs
once per collection (strong/weak reference set/vector).

_identificationSize 1 Maximum key (unique identifier) size of approximately 256
bytes. We currently have GUIDs that are 16 bytes and UMIDs
that are 32 bytes. This field occurs once on each strong reference
set, weak reference singleton, weak reference vector and weak
reference set.

_referenceCount 4 Maximum of approximately 4 G different weak references to a
given object. This field occurs on each element of a strong
reference set. OXffFfffff == this object is sticky.

_referencedPropertyIndex | 2 Maximum of approximately 64 k strong reference sets each
containing weakly referenced objects. This field occurs once on
each weak reference singleton, weak reference vector and weak
reference set. It identifies the set in which the target of the weak
reference(s) resides.

_localKey 4 The _localKey is the insertion key. This field is the same size as
the _entryCount field.

13

1.6 File Signatures
[TBS]

1.7 PID Assignment
This section is informational only. It does not form part of the stored format implemented by the Object Manager. It
describes the PID assignment scheme used by AAF.

PID is short for property identifier, PIDs are also known, in the AAF context, as AAF local identifiers.

1.7.1 Background

Property instances are uniquely identified by GUID. Use of a GUID allows independent, concurrent extension of the
object model (users may define new optional properties) without conflict.

GUIDs are 16 bytes in size. PIDs are designed to save space. Their cost is 2 bytes per property instance instead of 16
bytes. Note that the average AAF property size is (very) approximately 10-20 bytes, making an overhead, to identify
the property, of 2 bytes acceptable and an overhead of 16 bytes unacceptable.

The PIDs are unique per-file and each file has a mapping PID <-> GUID (in the dictionary). By fixing the PIDs for all
predefined properties, a map is only needed for the "user defined" properties.

Note that when a user enters the definition for a new property into the dictionary they supply the GUID but not the PID.
The PID is assigned automatically and transparently by the AAF implementation. The mapping PID <-> GUID for the
new property is entered into the dictionary.

This means that for "user defined" properties, their PIDs are assigned and or reassigned as property instances (and, if
necessary, their definitions) are moved from file to file. Thus the PIDs of "user defined" properties are not fixed and
vary from file to file.

Additionally some fixed PIDs are used to "boot strap” the object model. These PIDs are used in meta-definitions.

The PID 0x0000 is reserved and is never assigned.

1.7.2 Categories of PID

Purpose Scope Range Number of values Current min - max
Never assigned Never valid 0x0000 - 0x0000 1
Meta-definitions Valid and the same in all files 0x0001 - OX00FF 255 | 0x0001 - 0x0020

Reserved by AAF

Valid and the same in all files

0x0100 - OX7FFF

32512

0x0101 - 0x0315

AAF User Defined

Valid only within a particular file

0x8000 - OXFFFF

32768

The table shows the ranges of PIDs allocated for each purpose. Note that there may be free PIDs between the minimum
and maximum assigned values.

1.7.3 Rules for PID assignment

Within a file the first PID assigned to a user defined property definition is OXFFFF and the next is OXFFFE and so on
until the limit of 0x8000 is reached.

14

2. Mapping of Objects to XML

[TBS]

15

3. Mapping of Objects to KLV

[TBS]

16

4. Document History

Date Author Version | Change

21-Jun-01 Tim Bingham 0.1 Initial version

14-Aug-01 | Tim Bingham 0.2 Add field sizes in bytes (Structured Storage)
14-Aug-01 | Tim Bingham 0.3 Add section on assignment of PI1Ds
14-Aug-01 | Tim Bingham 0.4 Add missing description of Data Streams

17

