
DM Plug-in Design

Avid Technology

Revision 00.00.01

Author: Jeffrey Bedell

23-03-99

Document Title Page 2
23/03/99 Rev 0.02 0.00.00

Contents

1. OVERVIEW ..3

2. PLUG-IN DESIGN..4

2.1 Objects . 4

2 . 2 O p e r a t i o n s o n p l u g - i n s . 5
2.2.1 Finding the executable code for a codec...5
2.2.2 Loading the base codec set..6
2.2.3 Finding out what codecs are loaded...7

3. ESSENCE PLUG-IN DESIGN..8

3.1 Objects . 8

3 . 2 T y p i c a l M e d i a A c t i o n s . 9
3.2.1 Opening and reading a media stream...9
3.2.2 Opening and reading a raw media stream..9
3.2.3 Creating a media stream...9

4. INTERPOLATOR PLUG-IN DESIGN...10

5. RELATED DOCUMENTS..10

6. REVISION HISTORY..10

Document Title Page 3
23/03/99 Rev 0.02 0.00.00

1. Overview

This document is the design specification for the handling of plug-ins within the Advanced Authoring
Format (AAF) SDK. Included within this specification are:

• The mechanism for selecting a plug-in which is currently loaded
• An example of plug-ins by AAFEssenceAccess (AAFEssenceStream and

AAFEssenceCodec)
• An example of plug-in interpolators
• An example of reaching information needed to handle a plug-in with an API other

than those above

Code to call plug-ins with other API codec is NOT included in this design.

The specification is annotated with UML class diagrams and interaction diagrams. A quick reference
for UML is available at:

http://www.rational.com/uml/resources/quick/uml_poster.jtmpl

Document Title Page 4
23/03/99 Rev 0.02 0.00.00

2. Plug-in Design

2.1 Objects

The objects making up the plug-in subsystem come in both persistent and transient flavors. The
AAFPluggableDefinition and the AAFPluginDescriptor both reside in the dictionary, and the
AAFPluggableCode resides in the content storage.

AAFPluginDescriptor

Weak Reference

AAFDefObject

Weak Reference

1

Weak Reference

AAFNetworkLocator

Dictionary and Plugin Handling

AAFPluggableCode

DefinitionObjectHeirarchy::AAFPluggableDefinition

0..*0..*0..*0..*0..*0..*

AAFDictionary

0..*0..*0..*

0..*0..*0..*

The AAFPluggableDefinition object describes the kind of plug-in, without referring to actual executable
code. It has subclasses for AAFCodecDefinition, AAFInterpolatorDefinition, and so on. An
AAFPluggableDefinition has weak references to one or more AAFPluginDescriptor, which tells how to
get to executable code for one platform.

Having the AAFPluginDescriptors owned by the dictionary and using weak references from the
AAFPluggableDefinition allows a single plug-in code module to contain more than one
AAFPluggableDefinition (ex: A collection of AAFEffectDefinitions, all of which may be processed
with a single piece of code).

The executable code may be present in the AAF file, encapsulated in an AAFPluggableCode object,
which is attached to the content descriptor. The AAFPluginDescriptor may instead contain two arrays
of locators, one of which is the actual download URL for the plug-in, and the other is the URL of the
manufacturer of the plug-in. The array of download URLs is an ordered list, with the most available
download sites first in the list. The list should be scanned once to see if one of the URLs is local to the
receiving site, and then tried top to bottom.

Multiple AAFPluginDescriptors may exist for a given AAFPluggableDefinition, indicating other
implementations of a given effect, AAFEssenceCodec, etc. The possible differences include platform,
hardware accelerated, no hardware required, and cost (if any) of the plug-in.

Document Title Page 5
23/03/99 Rev 0.02 0.00.00

The definition object class hierarchy now looks as follows:

Dictionary::AAFPluginDescriptor

AAFContainerDef

AAFPluggableDefinition
AAFDataDefinition

AAFDefinitionObject

AAFInterpolatorDef AAFEffectDefAAFCodecDefAAFEssenceStreamDef

2.2 Operations on plug-ins

This section describes some common operations on plug-ins without reference to any particular type of
plug-in. This is because only a few plug-in APIs have been defined, and these are covered in later
sections).

2.2.1 Finding the executable code for a plug-in

One common operation is to locate the interface pointer for a plug-in, given some form of
AAFPluggableDefinition (such as AAFInterpolatorDefinition). Given the assumption that the client
application already has a pointer to an AAFPluggableDefinition subclass, there possibilities are:
1. The code is already loaded as a registered DLL
2. The code exists in a DLL on some remote system
3. The code exists inside of an AAFPluggableCode in the AAF file.

I am assuming that the binary data inside of an AAFPluggableCode is a complete DLL, which may be
registered by the AAF SDK, and so there is not a fourth case of an AAFPluggableCode which is loaded.

Document Title Page 6
23/03/99 Rev 0.02 0.00.00

The AAFPluggableCode
object is only called if the
code is embedded in the
AAF file. It is not called if
the code exists as a DLL, or
a URL which loads a DLL.

The operations in the
"ClientApplicationCallback"
path is only followed if the
media is not already loaded
(local), and is not embedded
in the AAF file.

GetInterfaceID

See if plugin is local

Request Plugin

See if plugin is local

Get Interface ID

InterfaceID

GetInterfaceID

InterfaceID

InterfaceID

AAFPluginDescriptor

See if plugin is local

InterfaceID

Request Plugin

InterfacePtr

AAFPluggableDefinition

InterfacePtr InterfaceID
InterfaceID

Get Interface ID

InterfaceID

See if plugin is local

InterfaceID

Request Plugin

InterfacePtr

See if plugin is local

Get Interface ID

InterfaceID

GetInterfaceID

InterfaceID

InterfaceID

Get Interface ID

InterfaceID

Get Interface ID

InterfaceID

AAFPluggableCode

GetInterfaceID

InterfaceID

Request Plugin

InterfacePtr

Client Application

GetInterfaceID

InterfaceID

Request Plugin

InterfacePtr

When searching for the best AAFPluginDescriptor, other criteria such as hardware accelerated or
software-only can be specified.

This design assumes the ability to call back across the interface between the application and the SDK,
as only the application has the ability to manage the user interface which may be required in order to
download the plug-in.

2.2.2 Loading the base plug-in set

The AAF SDK loads a certain set of basic plug-in definitions on startup. How the definitions are stored
is <TBD>, but the actual code will exist in a single DLL for each type of plug-in.

GetMetaInfo

Returns AAFCodecDescriptor

Codec

Add AAFCodecDef

Context

Init
Find Codec

Return Interface Pointer

GetMetaInfo

Returns AAFCodecDescriptor

Add AAFCodecDef

PluginManager

Add AAFCodecDefAdd AAFCodecDef

Init
Find Codec

Return Interface Pointer

GetMetaInfo

Returns AAFCodecDescriptor

Add AAFCodecDef

Init

Client Application

Find Codec

Return Interface Pointer

OS

GetMetaInfo

Returns AAFCodecDescriptor

Find Codec

Return Interface Pointer

InitInit

Returns AAFCodecDescriptor

GetMetaInfo

Return Interface Pointer

Find Codec

Document Title Page 7
23/03/99 Rev 0.02 0.00.00

2.2.3 Finding out what plug-ins are loaded

Next

Result

Create

Next

Result

Get EnumAAFCodecs

Next

Result

Get EnumAAFCodecs

Next

Result

Client Application

Create

Next

Result

EnumAAFPluggableDefinition

Create

Get EnumAAFCodecsGet EnumAAFCodecs

Create

Get EnumAAFCodecs

Create

PluginManager

Document Title Page 8
23/03/99 Rev 0.02 0.00.00

3. Essence Plug-in Design

In order to show an example of an AAF Plug-in type, the AAF SDK essence access class and support
classes will be described, showing how plug-ins integrate. There are two plug-ins in this subsystem,
codecs and essence containers.

3.1 Objects
The essence access layer of the AAF SDK is diagramed below. The class AAFEssenceFormat is not
related to plug-ins, and will not be discussed further in this design document.

AAFEssenceStream

«interface»
IAAFEssenceContainer

0..*0..*0..*

«interface»
IAAFCodec

CAAFEssenceDataStream CAAFEssenceFileStream

CAAFWaveCodec

CAAFEssenceAccess

CAAFEssenceFormat

Essence Layer

0..*0..*0..*

The classes covered here are:
• AAFEssenceAccess

A helper class, which allows you to access essence as a stream, without having to consider
formatting, decompression, and reformatting.

• Implementers of IAAFEssenceCodec (ex: CAAFWAVECodec)

Classes which encapsulate the format of the bits within a file (ex: TIFF, WAVE, RGBA) and
any compression used.

• AAFEssenceStream
 Class which restructures the data from byte streams into sample streams. Created by a

collaboration of IAAFEssenceContainer and IAAFEssenceCodec.

• Implementers of IAAFEssenceContainer
Classes which encapsulate the form in which the bits produced by the codec are stored.
Examples of streams include CAAFEssenceDataStream, in which the bits exist as a property
within an AAF file, and CAAFEssenceFileStream, in which the bits exist in a file by
themselves.

Document Title Page 9
23/03/99 Rev 0.02 0.00.00

3.2 Typical Media Actions
3.2.1 Opening and reading a media stream

MasterMob, SlotID

Find to MatchDescriptor

Read one frame
Read one frame

Decompress data and return
Frame of essence

Close
Close

Find to MatchDescriptor

Will you handle descriptor

Yes, no

Open

Find to MatchDescriptor

Will you handle descriptor

Yes, no

Open

AAFPluginManager

Will you handle descriptor

Yes, no

Open
Open Stream

Read one frame
Read one frame

Frame of raw data
Decompress data and return

Close
Close

Will you handle descriptor

Yes, no

Open
Open Stream

Read one frame
Read one frame

Frame of raw data
Decompress data and return

Close
Close

AAFEssenceCodec

Return up call chain

Close
Close

Close

Open Stream

Return up call chain

Read one frame

Frame of raw data

Close

Return up call chain

MasterMob, SlotID

Return up call chain

Read one frame

Frame of essence

Close

Return up call chain

MasterMob, SlotID

Return up call chain

Read one frame

Frame of essence

Close

Return up call chain

Client Application

Frame of essence
Decompress data and return

Frame of raw data

Read one frame
Read one frame

Read one frame

Return up call chain

Open Stream
Open

Yes, no

Will you handle descriptor

Find to MatchDescriptor

MasterMob, SlotIDMasterMob, SlotID

Find to MatchDescriptor

Read one frame
Read one frame

Decompress data and return
Frame of essence

Close
Close

AAFEssenceAccess

Open Stream

Return up call chain

Read one frame

Frame of raw data

Close

Return up call chain

AAFEssenceStream

3.2.2 Opening and reading a raw media stream

AAFEssenceStream

OpenRaw

Handle descriptor?

Yes, No

OpenRaw

OpenRaw

GetStream
AAFEssenceStream

GetStreamGetStream
AAFEssenceStream

OpenRaw

Return essence stream to client

Read one frame

Frame of essence

Close

ReturnReturn

OpenRaw

Return essence stream to client

Read one frame

Frame of essence

Close

Return

AAFEssenceStream

MasterMob, Slot, Position

Return essence stream to client

Read one frame

Frame of essence

Close

Return

MasterMob, Slot, Position

Return essence stream to client

Read one frame

Frame of essence

Close

Return

Client Application

GetStream
AAFEssenceStream

AAFContainer

Handle descriptor?

Yes, No

OpenRaw

OpenRaw

GetStream
AAFEssenceStream

AAFEssenceCodec

Handle descriptor?
Find to match descriptor

Handle descriptor?

Yes, No

OpenRaw

AAFPluginManager

MasterMob, Slot, Position
Find to match descriptor

AAFEssenceAccess

Close

Frame of essence

Read one frame

Return essence stream to client

OpenRaw

Yes, No

Find to match descriptor
Handle descriptor?

Yes, No

OpenRaw

Find to match descriptor
MasterMob, Slot, PositionMasterMob, Slot, Position

Find to match descriptor

3.2.3 Creating a media stream

Document Title Page 10
23/03/99 Rev 0.02 0.00.00

4. Interpolator Plug-in Design

The design of interpolators is much simpler, as the plug-in code consists of a single class with no
interaction outside of itself. The class AAFInterpolatorDef will have methods to locate the plug-in
code, which implement IAAFInterpolatorPlugin. The classes which implement
IAAFInterpolatorPlugin have a single method which interpolates between to given AAFControlPoint
to a new location, given the algorithm used by the plugins. Some interpolators (ex: linear and step)
should be able to handle a range of types on the control points, whereas others may require specific
types (ex: pairs of coordinate points).

5. Related Documents

File Name Location Owner Description

SMPTE
Specification

My version is SMPTE
P18.277.990122 (Dynamic)

OMFI 2.1 Spec Avid

6. Revision History

Name Date Version Description

Jeffrey Bedell 2/16/1999 0.0.1 Initial Revision

